GROUP LAPLACIANS

Definition (Cayley graph)

Let $G = \langle S | \mathcal{R} \rangle$ be a (finitely presented) group. Cayley graph Cay(G, S) is a graph (V, E), where

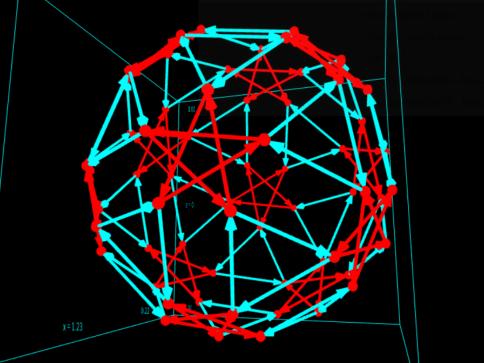
V = G and $(g,h) \in E \iff gh^{-1} \in S.$

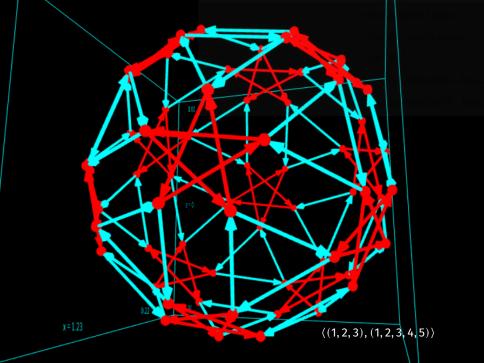
Definition (Cayley graph)

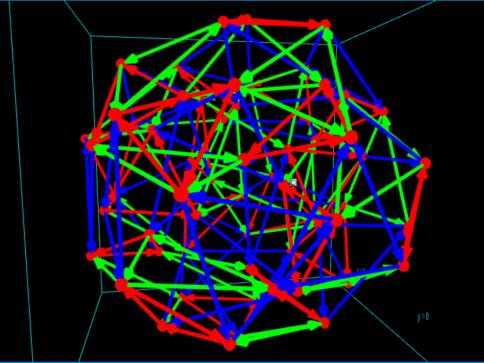
Let $G = \langle S | \mathcal{R} \rangle$ be a (finitely presented) group. Cayley graph Cay(G, S) is a graph (V, E), where

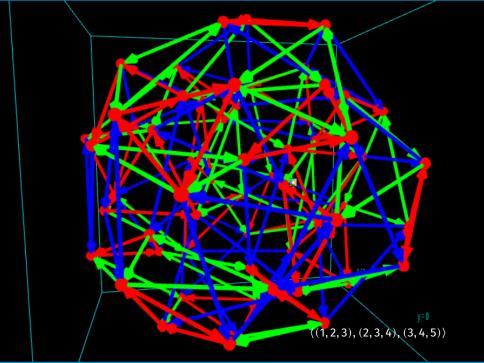
V = G and $(g,h) \in E \iff gh^{-1} \in S.$

► Cay(G, S) are very symmetric: links of all vertices are isomorphic.









Definition (Group algebra)

▶ elements of $\mathbb{R}[G]$ are (finitely supported) functions $a: G \to \mathbb{R}$, usually written as $a = \sum_g a_g g$

Definition (Group algebra)

- ▶ elements of $\mathbb{R}[G]$ are (finitely supported) functions $a: G \to \mathbb{R}$, usually written as $a = \sum_g a_g g$
- multiplication is convolution: if $a = \sum_g a_g g$ and $b = \sum_g b_g g$ then

$$ab = \sum_{g} \sum_{h} a_{gh^{-1}} b_h g$$

Definition (Group algebra)

- ▶ elements of $\mathbb{R}[G]$ are (finitely supported) functions $a: G \to \mathbb{R}$, usually written as $a = \sum_g a_g g$
- multiplication is convolution: if $a = \sum_g a_g g$ and $b = \sum_g b_g g$ then

$$ab = \sum_{g} \sum_{h} a_{gh^{-1}} b_h g$$

▶ the involution $* : \mathbb{R}[G] \to \mathbb{R}[G]$ induced by $g \mapsto g^{-1}$ and trivial on \mathbb{R} gives $\mathbb{R}[G]$ the structure of *-algebra, e.g.

$$(1e - 2g + 3g^{-1}h^2)^* = 1e - 2g^{-1} + 3h^{-2}g.$$

$$\Delta(G,S) = \Delta(\mathsf{Cay}(G,S)) = |S|(Id - M_S)$$

$$\Delta(G,S) = \Delta(\mathsf{Cay}(G,S)) = |S|(Id - M_S)$$

$$\Delta = |\mathsf{S}|\boldsymbol{e} - \sum_{\boldsymbol{g} \in \mathsf{S}} \boldsymbol{g} \in \mathbb{R}[\mathsf{G}]$$

$$\Delta(G,S) = \Delta(\mathsf{Cay}(G,S)) = |S|(Id - M_S)$$

$$\Delta = |\mathsf{S}|\boldsymbol{e} - \sum_{\boldsymbol{q} \in \mathsf{S}} \boldsymbol{g} \in \mathbb{R}[\mathsf{G}]$$

• the operator
$$\Delta$$
 is *-invariant,

$$\Delta(G,S) = \Delta(\mathsf{Cay}(G,S)) = |S|(Id - M_S)$$

$$\Delta = |\mathsf{S}|\boldsymbol{e} - \sum_{\boldsymbol{g} \in \mathsf{S}} \boldsymbol{g} \in \mathbb{R}[\mathsf{G}]$$

- the operator Δ is *-invariant,
- spectrum of Δ is real and non-negative;

$$\Delta(G,S) = \Delta(\mathsf{Cay}(G,S)) = |S|(Id - M_S)$$

$$\Delta = |\mathsf{S}|\boldsymbol{e} - \sum_{\boldsymbol{g} \in \mathsf{S}} \boldsymbol{g} \in \mathbb{R}[\mathsf{G}]$$

- the operator Δ is *-invariant,
- spectrum of Δ is real and non-negative;
- \blacktriangleright the second eigenvalue λ_1 is called the **spectral gap**

$$0=\lambda_0\leqslant\lambda_1\leqslant\cdots$$

► For a unitary representation $\pi: G \to \mathcal{U}(\mathcal{H})$ of **G** on a Hilbert space denote by

$$\mathcal{H}^{\pi} = \{ \mathsf{v} \in \mathcal{H} : \pi(g)\mathsf{v} = \mathsf{v} \text{ for all } g \in G \}$$

► For a unitary representation $\pi: G \to \mathcal{U}(\mathcal{H})$ of **G** on a Hilbert space denote by

$$\mathcal{H}^{\pi} = \{ \mathbf{v} \in \mathcal{H} : \pi(g)\mathbf{v} = \mathbf{v} \text{ for all } g \in G \}$$

$$\|\pi(g)\xi - \xi\|_{\mathcal{H}} \colon \xi \in (\mathcal{H}^{\pi})^{\perp}$$

► For a unitary representation $\pi: G \to \mathcal{U}(\mathcal{H})$ of **G** on a Hilbert space denote by

$$\mathcal{H}^{\pi} = \{ \mathsf{v} \in \mathcal{H} : \pi(g)\mathsf{v} = \mathsf{v} \text{ for all } g \in \mathsf{G} \}$$

$$\left\{\max_{g\in S} \|\pi(g)\xi - \xi\|_{\mathcal{H}} \colon \xi \in (\mathcal{H}^{\pi})^{\perp}\right\}$$

► For a unitary representation $\pi: G \to \mathcal{U}(\mathcal{H})$ of **G** on a Hilbert space denote by

$$\mathcal{H}^{\pi} = \{ \mathbf{v} \in \mathcal{H} : \pi(g)\mathbf{v} = \mathbf{v} \text{ for all } g \in G \}$$

$$\inf_{\|\xi\|=1}\left\{\max_{g\in S}\|\pi(g)\xi-\xi\|_{\mathcal{H}}\colon \xi\in (\mathcal{H}^{\pi})^{\perp}\right\}$$

► For a unitary representation $\pi: G \to \mathcal{U}(\mathcal{H})$ of **G** on a Hilbert space denote by

$$\mathcal{H}^{\pi} = \{ \mathbf{v} \in \mathcal{H} : \pi(g)\mathbf{v} = \mathbf{v} \text{ for all } g \in G \}$$

the (closed) subspace of π -invariant vectors.

► We define

$$\kappa(G,S,\pi) = \inf_{\|\xi\|=1} \left\{ \max_{g\in S} \|\pi(g)\xi - \xi\|_{\mathcal{H}} \colon \xi \in (\mathcal{H}^{\pi})^{\perp} \right\}$$

For a unitary representation $\pi: G \to \mathcal{U}(\mathcal{H})$ of G on a Hilbert space denote by

$$\mathcal{H}^{\pi} = \{ \mathsf{v} \in \mathcal{H} : \pi(g)\mathsf{v} = \mathsf{v} \text{ for all } g \in \mathsf{G} \}$$

the (closed) subspace of π -invariant vectors.

► We define

$$\kappa(G,S,\pi) = \inf_{\|\xi\|=1} \left\{ \max_{g\in S} \|\pi(g)\xi - \xi\|_{\mathcal{H}} \colon \xi \in (\mathcal{H}^{\pi})^{\perp} \right\}$$

Definition

The **Kazhdan's constant** $\kappa(G, S)$ is defined as

$$\kappa(\mathsf{G},\mathsf{S}) = \inf_{\pi} \kappa(\mathsf{G},\mathsf{S},\pi)$$

over all orthogonal representations π of **G**.

For a unitary representation $\pi: G \to \mathcal{U}(\mathcal{H})$ of G on a Hilbert space denote by

$$\mathcal{H}^{\pi} = \{ \mathsf{v} \in \mathcal{H} : \pi(g)\mathsf{v} = \mathsf{v} \text{ for all } g \in \mathsf{G} \}$$

the (closed) subspace of π -invariant vectors.

► We define

$$\kappa(G,S,\pi) = \inf_{\|\xi\|=1} \left\{ \max_{g \in S} \|\pi(g)\xi - \xi\|_{\mathcal{H}} \colon \xi \in (\mathcal{H}^{\pi})^{\perp} \right\}$$

Definition

The **Kazhdan's constant** $\kappa(G, S)$ is defined as

$$\kappa(\mathsf{G},\mathsf{S}) = \inf_{\pi} \kappa(\mathsf{G},\mathsf{S},\pi)$$

over all orthogonal representations π of G. We say that G has the **Kazhdan's property (T)** if and only if there exists a (finite) generating set S such that $\kappa(G,S) > 0$.

Property (T) is a hard analytic property;

- Property (T) is a hard analytic property;
- the constant $\kappa(G, S) \ge 0$ is a quantitative indicator of the property;

- Property (T) is a hard analytic property;
- the constant $\kappa(G, S) \ge 0$ is a quantitative indicator of the property;
- the exact value of κ does depend on **S**; its positivity does not;

- Property (T) is a hard analytic property;
- the constant $\kappa(G, S) \ge 0$ is a quantitative indicator of the property;
- the exact value of κ does depend on S; its positivity does not;
- estimating the constant is very hard;

▶ It is known that $SL(n, \mathbb{Z})$ has property (T) iff $n \ge 3$;

- It is known that $SL(n, \mathbb{Z})$ has property (T) iff $n \ge 3$;
- $SAut(F_n)$ is a noncommutative analogue of $SL(n, \mathbb{Z})$;

- ▶ It is known that $SL(n, \mathbb{Z})$ has property (T) iff $n \ge 3$;
- $SAut(F_n)$ is a noncommutative analogue of $SL(n, \mathbb{Z})$;
- ► **SAut**(*F*₃) does not have (T)... (McCool 1989);

- ▶ It is known that $SL(n, \mathbb{Z})$ has property (T) iff $n \ge 3$;
- $SAut(F_n)$ is a noncommutative analogue of $SL(n, \mathbb{Z})$;
- ► **SAut**(*F*₃) does not have (T)... (McCool 1989);
- ► Does $SAut(F_n)$ have (T) for $n \ge 4$? (Lubotzky 1994, Lubotzky-Pak 2001, Fisher 2006, Bridson-Vogtmann 2006, Breuillard 2014, ...);

- ▶ It is known that $SL(n, \mathbb{Z})$ has property (T) iff $n \ge 3$;
- $SAut(F_n)$ is a noncommutative analogue of $SL(n, \mathbb{Z})$;
- ► **SAut**(*F*₃) does not have (T)... (McCool 1989);
- ► Does $SAut(F_n)$ have (T) for $n \ge 4$? (Lubotzky 1994, Lubotzky-Pak 2001, Fisher 2006, Bridson-Vogtmann 2006, Breuillard 2014, ...);
- 2017: SAut(F₅) has (T): a constructive (computer assisted) proof (joint with P.W.Nowak and N.Ozawa)

- ▶ It is known that $SL(n, \mathbb{Z})$ has property (T) iff $n \ge 3$;
- $SAut(F_n)$ is a noncommutative analogue of $SL(n, \mathbb{Z})$;
- ► **SAut**(*F*₃) does not have (T)... (McCool 1989);
- ► Does $SAut(F_n)$ have (T) for $n \ge 4$? (Lubotzky 1994, Lubotzky-Pak 2001, Fisher 2006, Bridson-Vogtmann 2006, Breuillard 2014, ...);
- ► 2017: SAut(F₅) has (T): a constructive (computer assisted) proof (joint with **P.W.Nowak** and **N.Ozawa**)
- 2018: SAut(F_n) has (T): a constructive (computer assisted) proof (joint with P.W.Nowak and D.Kielak).

Random group elements in finite groups:

Random group elements in finite groups: estimating mixing time of the **Product Replacement Algorithm** depends on the Kazhdan's constant of $SAut(F_n)$, the special authomorphism group of the free group:

Theorem (Lubotzky & Pak, 2000)

Let *K* be a finite group generated by $k \le n$ elements. If $SAut(F_n)$ has property (*T*) with constant $\kappa = \kappa(SAut(F_n), \{transvections\}) > 0$, then **PRA** walk has fast mixing time,

Theorem (Lubotzky & Pak, 2000)

Let *K* be a finite group generated by $k \le n$ elements. If $SAut(F_n)$ has property (*T*) with constant $\kappa = \kappa(SAut(F_n), \{transvections\}) > 0$, then **PRA walk** has fast mixing time, i.e.

$$\left\| \left| Q_{(g)}^{\mathsf{t}} - U \right| \right\|_{\mathsf{tv}} \leq \varepsilon$$

Theorem (Lubotzky & Pak, 2000)

Let *K* be a finite group generated by $k \le n$ elements. If $SAut(F_n)$ has property (T) with constant $\kappa = \kappa(SAut(F_n), \{transvections\}) > 0$, then **PRA** walk has fast mixing time, i.e.

$$\left\| Q_{(g)}^{t} - U \right\|_{tv} \leq \varepsilon$$
 for $t \geq \frac{16}{\kappa^{2}} \log \frac{|\Gamma_{n}|}{\varepsilon}$

 $(Q_{(g)} \text{ is a random walk on the graph } \Gamma_n \text{ starting at generating } n$ -tuple (g)).

Theorem (Lubotzky & Pak, 2000)

Let K be a finite group generated by $k \le n$ elements. If $SAut(F_n)$ has property (T) with constant $\kappa = \kappa(SAut(F_n), \{transvections\}) > 0$, then **PRA** walk has fast mixing time, i.e.

$$\left\| Q_{(g)}^{t} - U \right\|_{tv} \leq \varepsilon$$
 for $t \geq \frac{16}{\kappa^{2}} \log \frac{|\Gamma_{n}|}{\varepsilon}$

 $(Q_{(g)} \text{ is a random walk on the graph } \Gamma_n \text{ starting at generating } n$ -tuple (g)).

Note

We do observe fast mixing time in practice for large *n*.

• Connection to the spectral gap of Δ : $\kappa(G, S)$ can be estimated as

$$\sqrt{\frac{2\lambda_1}{|\mathsf{S}|}} \leqslant \kappa(\mathsf{G},\mathsf{S}).$$

• Connection to the spectral gap of Δ : $\kappa(G, S)$ can be estimated as

$$\sqrt{\frac{2\lambda_1}{|S|}} \leq \kappa(G,S).$$

Corollary

We have $\lambda \in [0, \lambda_1) \iff \Delta^2 - \lambda \Delta \ge 0$, i.e. if there exists $\lambda > 0$ such that $\Delta^2 - \lambda \Delta \ge 0$, then **G** has property (T) with

$$\sqrt{\frac{2\lambda}{|\mathsf{S}|}} \leqslant \kappa(\mathsf{G},\mathsf{S}).$$

How to prove that $\Delta^2-\lambda\Delta \geqslant 0$?

Given a polynomial $f \in \mathbb{R}[x]$ is f globally non-negative?

Given a polynomial $f \in \mathbb{R}[\mathbf{x}]$ is f globally non-negative? Easy to check refutation (find an $x \in \mathbb{R}^n$ such that f(x) < 0). Does there exist a *witness* for confirmation that is also easy to verify?

- **analytic**: the value $f(x) \ge 0$ for every $x \in \mathbb{R}^n$
- **algebraic**: $f \in \mathbb{R}[\mathbf{x}]$ admits an algebraic structure which forces it to be positive

- **analytic**: the value $f(x) \ge 0$ for every $x \in \mathbb{R}^n$
- **algebraic**: $f \in \mathbb{R}[\mathbf{x}]$ admits an algebraic structure which forces it to be positive
- $f = ax^2 + bx + c \ge 0$ if and only if $a \ge 0$ and $b^2 4ac \le 0$.

- **analytic**: the value $f(x) \ge 0$ for every $x \in \mathbb{R}^n$
- **algebraic**: $f \in \mathbb{R}[\mathbf{x}]$ admits an algebraic structure which forces it to be positive

 $f = ax^2 + bx + c \ge 0$ if and only if $a \ge 0$ and $b^2 - 4ac \le 0$. We say that f admits a sum of squares decomposition when

$$f = \sum_{i} f_i^2$$
 for some $f_i \in \mathbb{R}[\mathbf{x}]$.

Hilbert's 17th problem

Theorem (Hilbert, 1888)

An everywhere non-negative polynomial $p \in \Sigma^2 \mathbb{R}[x_1, ..., x_n]$ (is a sum of squares) if and only if either

- *n* = 1 (univariate polynomial), or
- $\deg p = 2$ (quadratic polynomial), or
- n = 2 and deg p = 4 (bivariate quartic).

Hilbert's 17th problem

Theorem (Hilbert, 1888)

An everywhere non-negative polynomial $p\in \Sigma^2\mathbb{R}[x_1,\ldots,x_n]$ (is a sum of squares) if and only if either

- *n* = 1 (univariate polynomial), or
- $\deg p = 2$ (quadratic polynomial), or
- n = 2 and deg p = 4 (bivariate quartic).

Example (Motzkin, 1967)

 $x^4y^2 + x^2y^4 - 3x^2y^2 + 1 \ge 0$ but not SOS.

Theorem (Hilbert, 1888)

An everywhere non-negative polynomial $p \in \Sigma^2 \mathbb{R}[x_1, ..., x_n]$ (is a sum of squares) if and only if either

- **n** = 1 (univariate polynomial), or
- $\deg p = 2$ (quadratic polynomial), or
- n = 2 and deg p = 4 (bivariate quartic).

Example (Motzkin, 1967)

 $x^4y^2 + x^2y^4 - 3x^2y^2 + 1 \ge 0$ but not SOS.

Theorem (Artin, 1924)

$$p \ge 0 \iff \exists q \colon q^2 p \in \Sigma^2 \mathbb{R}[x_1, \dots x_n]$$

(i.e. **p** is a sum of squares of rational functions).

Theorem (Hilbert, 1888)

An everywhere non-negative polynomial $p \in \Sigma^2 \mathbb{R}[x_1, ..., x_n]$ (is a sum of squares) if and only if either

- **n** = 1 (univariate polynomial), or
- $\deg p = 2$ (quadratic polynomial), or
- n = 2 and deg p = 4 (bivariate quartic).

Example (Motzkin, 1967)

 $x^4y^2 + x^2y^4 - 3x^2y^2 + 1 \ge 0$ but not SOS.

Theorem (Artin, 1924)

$$p \ge 0 \iff \exists q \colon q^2 p \in \Sigma^2 \mathbb{R}[x_1, \dots x_n]$$

(i.e. **p** is a sum of squares of rational functions).

Example

$$(x^{2}+y^{2}+1)(x^{4}y^{2}+x^{2}y^{4}-3x^{2}y^{2}+1)$$
 is a sum of squares!

- $p \in \mathbb{R}[\mathbf{x}]$ is positive iff $p(t) \ge 0$ for all $t \in \mathbb{R}^n \Longrightarrow$ analytic positivity.
- $p \in \mathbb{R}[\mathbf{x}]$ is *positive* iff p is a sum of squares (of rational functions) $\implies q^2 p \in \Sigma^2 \mathbb{R}[\mathbf{x}] \implies algebraic positivity.$

- · *p* ∈ $\mathbb{R}[\mathbf{x}]$ is positive iff $p(t) \ge 0$ for all $t \in \mathbb{R}^n \implies$ **analytic positivity**.
- $p \in \mathbb{R}[\mathbf{x}]$ is *positive* iff p is a sum of squares (of rational functions) $\implies q^2 p \in \Sigma^2 \mathbb{R}[\mathbf{x}] \implies algebraic positivity.$

Problem

How to find such sum of squares (SOS) decomposition?

We can write *f* as a **quadratic function of monomials**.

Example

$$f = 4x^4 + 4x^3y - 7x^2y^2 - 2xy^3 + 10y^4$$

can be written as

$$f = \begin{bmatrix} x^2, xy, y^2 \end{bmatrix} \begin{bmatrix} 4 & 2 & -\lambda \\ 2 & -7 + 2\lambda & -1 \\ -\lambda & -1 & 10 \end{bmatrix} \begin{bmatrix} x^2 \\ xy \\ y^2 \end{bmatrix} = \mathbf{x}^T P(\lambda) \mathbf{x}$$

We can write *f* as a **quadratic function of monomials**.

Example

$$f = 4x^4 + 4x^3y - 7x^2y^2 - 2xy^3 + 10y^4$$

can be written as

$$f = \begin{bmatrix} x^2, xy, y^2 \end{bmatrix} \begin{bmatrix} 4 & 2 & -\lambda \\ 2 & -7 + 2\lambda & -1 \\ -\lambda & -1 & 10 \end{bmatrix} \begin{bmatrix} x^2 \\ xy \\ y^2 \end{bmatrix} = \mathbf{x}^T P(\lambda) \mathbf{x}$$

P is so called **Gramm matrix** for *f*.

Lemma

f admits a sum of squares decomposition iff there exists a **positive** semidefinite Gramm matrix for some (sub)basis **x** of $\mathbb{R}[x_1, \dots x_n]$.

Lemma

f admits a sum of squares decomposition iff there exists a **positive semidefinite** Gramm matrix for some (sub)basis **x** of $\mathbb{R}[x_1, \dots x_n]$.

If **P** is positive semidefinite, then $P = Q^T Q$ (e.g. by Cholesky) and $f = \mathbf{x}^T P \mathbf{x} = \mathbf{x}^T Q^T \cdot Q \mathbf{x} = (Q \mathbf{x})^T \cdot (Q \mathbf{x}).$

Lemma

f admits a sum of squares decomposition iff there exists a **positive** semidefinite Gramm matrix for some (sub)basis **x** of $\mathbb{R}[x_1, \dots x_n]$.

If **P** is positive semidefinite, then $P = Q^T Q$ (e.g. by Cholesky) and

$$f = \mathbf{x}^T P \mathbf{x} = \mathbf{x}^T Q^T \cdot Q \mathbf{x} = (Q \mathbf{x})^T \cdot (Q \mathbf{x}).$$

Note: **Q** is not unique, especially in the rank deficient case; the number of squares equals the rank of **Q**.

Lemma

f admits a sum of squares decomposition iff there exists a **positive semidefinite** Gramm matrix for some (sub)basis **x** of $\mathbb{R}[x_1, \dots x_n]$.

If **P** is positive semidefinite, then $P = Q^T Q$ (e.g. by Cholesky) and

$$f = \mathbf{x}^T P \mathbf{x} = \mathbf{x}^T Q^T \cdot Q \mathbf{x} = (Q \mathbf{x})^T \cdot (Q \mathbf{x}).$$

Note: **Q** is not unique, especially in the rank deficient case; the number of squares equals the rank of **Q**.

Example

For example for $\lambda = 6$ we have

$$P(\lambda) = \begin{bmatrix} 4 & 2 & -6 \\ 2 & 5 & -1 \\ -6 & -1 & 10 \end{bmatrix} = Q^{\mathsf{T}} \cdot Q \quad \text{for } Q = \begin{bmatrix} 0 & 2 & 1 \\ 2 & 1 & -3 \end{bmatrix}$$

Therefore *f* admits a SOS decomposition

$$f = (2xy + y^2)^2 + (2x^2 + xy - 3y^2)^2.$$

Linear programming:

- optimise linear functional
- \cdot on the set constrained by hyperplanes (polytope)

Linear programming:

- optimise linear functional
- on the set constrained by hyperplanes (polytope)

Semi-definite programming

- optimise linear functional
- on a polytope intersected with the cone of PSD matrices (spectrahedron)
- weak duality, non-unique solutions
- even feasibility is a hard problem!

optimisation variables: a, b_1, b_2, c, λ .

optimisation variables: a, b_1, b_2, c, λ .

Example (PSD problem)

maximise: λ subject to: $\lambda \ge 0$ $c = 1 - \lambda$ $b_1 + b_2 = 4$ a = 2 $\begin{bmatrix} c & b_2 \\ b_1 & a \end{bmatrix} \ge 0$ optimisation variables: a, b_1, b_2, c, λ .

Example (PSD problem)

maximise: λ subject to: $\lambda \ge 0$ $c = 1 - \lambda$ $b_1 + b_2 = 4$ a = 2 $\begin{bmatrix} c & b_2 \\ b_1 & a \end{bmatrix} \ge 0$

tries to maximise λ as long as $(2x^2 + 4x + 1) - \lambda \ge 0$.

$$\begin{array}{l} \min_{P \in \mathcal{S}^N} & \langle C, P \rangle \\ \text{subject to:} & \langle A_i, P \rangle = b_i, \quad i = 1, 2, \dots, m \\ & P \geq 0. \end{array}$$

$$\begin{array}{ll} \min_{\substack{P \in \mathcal{S}^N \\ \text{subject to:}}} & \langle C, P \rangle \\ \text{subject to:} & \langle A_i, P \rangle = b_i, \quad i = 1, 2, \dots, m \\ P \geq 0. \end{array}$$

Is $f(x) = 4x^4 + 4x^3y - 7x^2y^2 - 2xy^3 + 10y^4$ always non-negative? \rightarrow sum of squares relaxation: Does there exist psd matrix *P* s.t.

$$f = \mathbf{x}^T P \mathbf{x} = \langle \mathbf{x} \mathbf{x}^T, P \rangle?$$

Feasibility problem with

$$X = \begin{bmatrix} x^2 \\ xy \\ y^2 \end{bmatrix}, XX^{\top} = \begin{bmatrix} x^4 & x^3y & x^2y^2 \\ \cdot & x^2y^2 & xy^3 \\ \cdot & \cdot & y^4 \end{bmatrix}, A_{x^4} = \begin{bmatrix} 1 & 0 & 0 \\ \cdot & 0 & 0 \\ \cdot & \cdot & 0 \end{bmatrix}, A_{x^3y} = \begin{bmatrix} 0 & 1 & 0 \\ \cdot & 0 & 0 \\ \cdot & \cdot & 0 \end{bmatrix}, \text{ etc.}$$

 $b = (b_i)$ is the vector of coefficients of f.

Example

 $\blacktriangleright \mathbb{R}[x_1,\ldots,x_d], p \mapsto p$

Example

- $\blacktriangleright \mathbb{R}[x_1,\ldots,x_d], p \mapsto p$
- ▶ $\mathbb{C}[x_1,...,x_d]$, $p \mapsto \overline{p}$ (conjugation on coefficients)

Example

- $\blacktriangleright \mathbb{R}[x_1,\ldots,x_d], p \mapsto p$
- ▶ $\mathbb{C}[x_1,...,x_d], p \mapsto \overline{p}$ (conjugation on coefficients)
- ▶ $\mathbb{C}[z, z^{-1}]$ (Laurent polynomials) $\sum_{k=-N}^{N} a_k z^k \mapsto \sum_{k=-N}^{N} \overline{a_k} z^{-k}$

- $\blacktriangleright \mathbb{R}[x_1,\ldots,x_d], p \mapsto p$
- ▶ $\mathbb{C}[x_1,...,x_d]$, $p \mapsto \overline{p}$ (conjugation on coefficients)
- ▶ $\mathbb{C}[z, z^{-1}]$ (Laurent polynomials) $\sum_{k=-N}^{N} a_k z^k \mapsto \sum_{k=-N}^{N} \overline{a_k} z^{-k}$
- ▶ $\mathbb{C}[\mathbb{Z}] \cong \mathbb{C}[z, z^{-1}]$ (the complex group algebra of integers)

- $\blacktriangleright \mathbb{R}[x_1,\ldots,x_d], p \mapsto p$
- ▶ $\mathbb{C}[x_1,...,x_d]$, $p \mapsto \overline{p}$ (conjugation on coefficients)
- ▶ $\mathbb{C}[z, z^{-1}]$ (Laurent polynomials) $\sum_{k=-N}^{N} a_k z^k \mapsto \sum_{k=-N}^{N} \overline{a_k} z^{-k}$
- ▶ $\mathbb{C}[\mathbb{Z}] \cong \mathbb{C}[z, z^{-1}]$ (the complex group algebra of integers)

- $\blacktriangleright \mathbb{R}[x_1,\ldots,x_d], p \mapsto p$
- ▶ $\mathbb{C}[x_1,...,x_d]$, $p \mapsto \overline{p}$ (conjugation on coefficients)
- ▶ $\mathbb{C}[z, z^{-1}]$ (Laurent polynomials) $\sum_{k=-N}^{N} a_k z^k \mapsto \sum_{k=-N}^{N} \overline{a_k} z^{-k}$
- $\mathbb{C}[\mathbb{Z}] \cong \mathbb{C}[z, z^{-1}]$ (the complex group algebra of integers)
- ℝ(x₁,...,x_d), p → reverse(p) + linear extension (free polynomial algebra, i.e. variables don't commute!)
- ▶ $M_{n \times n}$, $M \mapsto M^*$ (real/complex matrix algebra)

- $\blacktriangleright \mathbb{R}[x_1,\ldots,x_d], p \mapsto p$
- ▶ $\mathbb{C}[x_1,...,x_d]$, $p \mapsto \overline{p}$ (conjugation on coefficients)
- ▶ $\mathbb{C}[z, z^{-1}]$ (Laurent polynomials) $\sum_{k=-N}^{N} a_k z^k \mapsto \sum_{k=-N}^{N} \overline{a_k} z^{-k}$
- ▶ $\mathbb{C}[\mathbb{Z}] \cong \mathbb{C}[z, z^{-1}]$ (the complex group algebra of integers)
- ▶ $\mathbb{R}\langle x_1, \ldots, x_d \rangle$, $p \mapsto \text{reverse}(p)$ + linear extension (free polynomial algebra, i.e. variables don't commute!)
- ▶ $M_{n \times n}$, $M \mapsto M^*$ (real/complex matrix algebra)
- ▶ $\mathbb{R}[G], g \mapsto g^{-1}$ + linear extension (real group algebra).

Definition

If ${\mathcal A}$ is a $*\mbox{-algebra},$ then the cone of sum of squares is defined as

$$\Sigma^2 \mathcal{A} = \left\{ \sum_{i=1}^n \xi_i^* \xi_i \colon \quad \xi_i \in \mathcal{A}, \quad n \in \mathbb{N} \right\}.$$

Definition

If ${\mathcal A}$ is a $*\mbox{-algebra},$ then the cone of sum of squares is defined as

$$\Sigma^2 \mathcal{A} = \left\{ \sum_{i=1}^n \xi_i^* \xi_i \colon \quad \xi_i \in \mathcal{A}, \quad n \in \mathbb{N} \right\}.$$

Note: each $p \in \Sigma^2 \mathcal{A}$ is fixed by *.

Definition

If $\mathcal A$ is a *-algebra, then the cone of sum of squares is defined as

$$\Sigma^2 \mathcal{A} = \left\{ \sum_{i=1}^n \xi_i^* \xi_i \colon \quad \xi_i \in \mathcal{A}, \quad n \in \mathbb{N} \right\}.$$

Note: each $p \in \Sigma^2 \mathcal{A}$ is fixed by *.

$$\Delta = |S|e - \sum_{g \in S} g = \frac{1}{2} \left(2|S|e - \sum_{g \in S} g^* + g \right) = \frac{1}{2} \sum_{g \in S} (2e - g^* - g)$$
$$= \frac{1}{2} \sum_{g \in S} (1 - g)^* (1 - g)$$

Example (Free polynomial algebra)

For a *-invariant element $a = \sum_g a_g g \in \mathbb{R} \langle x_1, \ldots, x_d \rangle$ we write $a \ge 0$ if for all $n \in \mathbb{N}$ and for every choice of matrices $A = (A_1, \ldots, A_d)$ (each $A_i \in M_n(\mathbb{R})$), the homomorphism φ_A defined by

$x_i \mapsto A_i$

takes **a** to a positive-semidefinite matrix:

$$a\mapsto \sum_{g}a_{g}\varphi_{\mathsf{A}}(g) \geqslant 0.$$

Example (Free polynomial algebra)

For a *-invariant element $a = \sum_g a_g g \in \mathbb{R} \langle x_1, \ldots, x_d \rangle$ we write $a \ge 0$ if for all $n \in \mathbb{N}$ and for every choice of matrices $A = (A_1, \ldots, A_d)$ (each $A_i \in M_n(\mathbb{R})$), the homomorphism φ_A defined by

 $x_i \mapsto A_i$

takes **a** to a positive-semidefinite matrix:

$$a\mapsto \sum_{g}a_{g}\varphi_{A}(g) \geqslant 0.$$

► If there are non-trivial relations between x_is (or the *-involution on A is not trivial) we need the matrices A₁,..., A_n to be compatible: this leads to *-algebra representations.

Example (Free polynomial algebra)

For a *-invariant element $a = \sum_g a_g g \in \mathbb{R} \langle x_1, \ldots, x_d \rangle$ we write $a \ge 0$ if for all $n \in \mathbb{N}$ and for every choice of matrices $A = (A_1, \ldots, A_d)$ (each $A_i \in M_n(\mathbb{R})$), the homomorphism φ_A defined by

 $x_i \mapsto A_i$

takes **a** to a positive-semidefinite matrix:

$$a\mapsto \sum_{g}a_{g}\varphi_{A}(g) \geqslant 0.$$

- ► If there are non-trivial relations between x_is (or the *-involution on A is not trivial) we need the matrices A₁,..., A_n to be compatible: this leads to *-algebra representations.
- This corresponds directly to evaluation of polynomials: the only representations of polynomial rings are

$$\varphi_t(p) = p(t)$$
 for t in \mathbb{R}^d .

Theorem (Abstract Positivstellensatz: K. Schmüdgen, ...)

For a *-invariant element $a \in A$ the following conditions are equivalent.

1. $a \ge 0$ (with respect to all *-representations of A),

2. $\mathbf{a} + \varepsilon \mathbf{u} \in \Sigma^2 \mathcal{A}$ for all $\varepsilon > 0$, where \mathbf{u} is an interior point of $\Sigma^2 \mathcal{A}$.

Recall that for a group *G*:

- ▶ property (T) is hard analytic;
- ▶ but (T) reduces to the positivity of $\Delta^2 \lambda \Delta$ in $\mathbb{R}[G]$
- ► NC-Positivstellensätz gives sums of squares approach

Recall that for a group *G*:

- ▶ property (T) is hard analytic;
- ▶ but (T) reduces to the positivity of $\Delta^2 \lambda \Delta$ in $\mathbb{R}[G]$
- ► NC-Positivstellensätz gives sums of squares approach

(as long as we know some interior points *u*)

NC-Positivstellensatz for $\mathbb{R}[G]$

• $\xi \ge 0 \iff \pi(\xi) \ge 0$ in every *-representation of $\mathbb{R}[G]$

NC-Positivstellensatz for $\mathbb{R}[G]$

- $\xi \ge 0 \iff \pi(\xi) \ge 0$ in every *-representation of $\mathbb{R}[G]$
- $\blacktriangleright \Sigma^2 \mathbb{R}[G] = \left\{ \sum_i \xi_i^* \xi_i \colon \xi \in \mathbb{R}[G] \right\}$

- $\xi \ge 0 \iff \pi(\xi) \ge 0$ in every *-representation of $\mathbb{R}[G]$
- $\Sigma^2 \mathbb{R}[G] = \left\{ \sum_i \xi_i^* \xi_i \colon \xi \in \mathbb{R}[G] \right\}$

Theorem (Positivstellensatz)

Assume that **u** is an interior point of $\Sigma^2 \mathbb{R}[G]$. For any *-invariant $\xi \in \mathbb{R}[G]$

 $\xi \ge 0 \iff \xi + \varepsilon u \in \Sigma^2 \mathbb{R}[G]$ for all $\varepsilon > 0$.

- $\xi \ge 0 \iff \pi(\xi) \ge 0$ in every *-representation of $\mathbb{R}[G]$
- $\Sigma^2 \mathbb{R}[G] = \left\{ \sum_i \xi_i^* \xi_i \colon \xi \in \mathbb{R}[G] \right\}$

Theorem (Positivstellensatz)

Assume that **u** is an interior point of $\Sigma^2 \mathbb{R}[G]$. For any *-invariant $\xi \in \mathbb{R}[G]$

$$\xi \ge 0 \iff \xi + \varepsilon u \in \Sigma^2 \mathbb{R}[G]$$
 for all $\varepsilon > 0$.

Example

1e is an interior point of $\Sigma^2 \mathbb{R}[G]$, i.e.

 $\text{Is } \Delta^2 - \lambda \Delta + \varepsilon \boldsymbol{e} \in \Sigma^2 \mathbb{R}[\boldsymbol{G}] \text{ for all } \varepsilon \text{ (and some } \lambda > \mathbf{0})?$

- $\xi \ge 0 \iff \pi(\xi) \ge 0$ in every *-representation of $\mathbb{R}[G]$
- $\blacktriangleright \Sigma^2 \mathbb{R}[G] = \left\{ \sum_i \xi_i^* \xi_i \colon \xi \in \mathbb{R}[G] \right\}$

Theorem (Positivstellensatz)

Assume that **u** is an interior point of $\Sigma^2 \mathbb{R}[G]$. For any *-invariant $\xi \in \mathbb{R}[G]$

$$\xi \ge 0 \iff \xi + \varepsilon u \in \Sigma^2 \mathbb{R}[G]$$
 for all $\varepsilon > 0$.

Example

1e is an interior point of $\Sigma^2 \mathbb{R}[G]$, i.e.

Is $\Delta^2 - \lambda \Delta + \varepsilon e \in \Sigma^2 \mathbb{R}[G]$ for all ε (and some $\lambda > 0$)?

This of no use for us: SOS decompositions $\Delta^2 - \lambda \Delta + \epsilon e = \sum \xi_i^* \xi_i$ may be very different for different ϵ .

NC-Positivstellensatz for *I*[*G*]

• Let
$$I[G] = \left\{ \sum_{g} a_{g}g : \sum_{g} a_{g} = 0 \right\}$$
 be the augmentation ideal.

• Let
$$I[G] = \left\{ \sum_{g} a_{g}g : \sum_{g} a_{g} = 0 \right\}$$
 be the augmentation ideal.

 Δ is an interior point of $\Sigma^2 I[G] = I[G] \cap \Sigma^2 \mathbb{R}[G]$

• Let
$$I[G] = \left\{ \sum_{g} a_{g}g : \sum_{g} a_{g} = 0 \right\}$$
 be the augmentation ideal.

 Δ is an interior point of $\Sigma^2 I[G] = I[G] \cap \Sigma^2 \mathbb{R}[G]$, i.e. for any $\xi = \xi^* \in I[G]$,

 $\xi \ge 0 \iff \xi + \varepsilon \Delta \in \Sigma^2 I[G]$ for all $\varepsilon > 0$.

• Let
$$I[G] = \left\{ \sum_{g} a_{g}g : \sum_{g} a_{g} = 0 \right\}$$
 be the augmentation ideal.

 Δ is an interior point of $\Sigma^2 I[G] = I[G] \cap \Sigma^2 \mathbb{R}[G]$, i.e. for any $\xi = \xi^* \in I[G]$,

$$\xi \ge 0 \iff \xi + \varepsilon \Delta \in \Sigma^2 I[G]$$
 for all $\varepsilon > 0$.

Example

If we can show that $\Delta^2 - \lambda \Delta + \varepsilon_0 \Delta = \sum \xi_i^* \xi_i$ for a single fixed ε_0 , then

$$\Delta^{2} - (\lambda - \varepsilon_{0})\Delta + \varepsilon\Delta = \sum \xi_{i}^{*}\xi_{i} + \varepsilon \sum_{s \in S} (1 - s)^{*}(1 - s) \in \Sigma^{2}I[G]$$

• Let
$$I[G] = \left\{ \sum_{g} a_{g}g : \sum_{g} a_{g} = 0 \right\}$$
 be the augmentation ideal.

 Δ is an interior point of $\Sigma^2 I[G] = I[G] \cap \Sigma^2 \mathbb{R}[G]$, i.e. for any $\xi = \xi^* \in I[G]$,

$$\xi \ge 0 \iff \xi + \varepsilon \Delta \in \Sigma^2 I[G]$$
 for all $\varepsilon > 0$.

Example

If we can show that $\Delta^2 - \lambda \Delta + \varepsilon_0 \Delta = \sum \xi_i^* \xi_i$ for a single fixed ε_0 , then

$$\Delta^{2} - (\lambda - \varepsilon_{0})\Delta + \varepsilon\Delta = \sum \xi_{i}^{*}\xi_{i} + \varepsilon \sum_{s \in S} (1 - s)^{*}(1 - s) \in \Sigma^{2}I[G]$$

for all ε simultanuously!

1. Pick $G = \langle S | \mathcal{R} \rangle$;

1. Pick $\mathbf{G} = \langle \mathbf{S} | \mathcal{R} \rangle$;

2. Set $E = (e, g_1, g_2, ..., g_n)$, $g_i \in B_d(e, S) (d = 2, 3, ...)$;

- 1. Pick $G = \langle S | \mathcal{R} \rangle$;
- 2. Set $E = (e, g_1, g_2, ..., g_n), g_i \in B_d(e, S) (d = 2, 3, ...);$
- 3. Solve the problem (numerically):

maximize:
$$\lambda$$

subject to: $P \ge 0$, $P \in \mathbb{M}_E$
 $(\Delta^2 - \lambda \Delta)_t = (E^* P E^T)_t = \langle M_t, P \rangle$, for all $t \in E^* E$

- 1. Pick $G = \langle S | \mathcal{R} \rangle$;
- 2. Set $E = (e, g_1, g_2, ..., g_n)$, $g_i \in B_d(e, S)$ (d = 2, 3, ...);
- 3. Solve the problem (numerically):

```
maximize: \lambda
subject to: P \ge 0, P \in M_E
(\Delta^2 - \lambda \Delta)_t = (E^* P E^T)_t = \langle M_t, P \rangle, for all t \in E^* E
```

4. Compute $\sqrt{P} = Q = [\overrightarrow{q_e}, \dots, \overrightarrow{q_{g_n}}]$ (columns of matrix Q)

- 1. Pick $G = \langle S | \mathcal{R} \rangle$;
- 2. Set $E = (e, g_1, g_2, ..., g_n)$, $g_i \in B_d(e, S)$ (d = 2, 3, ...);
- 3. Solve the problem (numerically):

maximize:
$$\lambda$$

subject to: $P \ge 0$, $P \in \mathbb{M}_E$
 $(\Delta^2 - \lambda \Delta)_t = (E^* P E^T)_t = \langle M_t, P \rangle$, for all $t \in E^* E$

- 4. Compute $\sqrt{P} = Q = [\overrightarrow{q_e}, \dots, \overrightarrow{q_{g_n}}]$ (columns of matrix Q)
- 5. Finally: $\xi_g = \langle E, \overrightarrow{q_g} \rangle \in \mathbb{R}[G]$ such that $\operatorname{supp}(\xi_g) \subset E$ satisfy

$$\Delta^2 - \lambda \Delta = \sum_{g \in E} \xi_g^* \xi_g.$$

1. Pick $G = \langle S | \mathcal{R} \rangle$;

2. Set
$$E = (e, g_1, g_2, \dots, g_n)$$
, $g_i \in B_d(e, S)$ $(d = 2, 3, \dots)$;

3. Solve the problem (numerically):

maximize:
$$\lambda$$

subject to: $P \ge 0$, $P \in M_E$
 $(\Delta^2 - \lambda \Delta)_t = (E^* P E^T)_t = \langle M_t, P \rangle$, for all $t \in E^* E$

4. Compute $\sqrt{P} = Q = [\overrightarrow{q_e}, \dots, \overrightarrow{q_{g_n}}]$ (columns of matrix Q)

5. Finally: $\xi_g = \langle E, \overrightarrow{q_g} \rangle \in \mathbb{R}[G]$ such that $\operatorname{supp}(\xi_g) \subset E$ satisfy

$$\Delta^2 - \lambda \Delta = \sum_{g \in E} \xi_g^* \xi_g.$$

(Modulo certification of the result.)

G	n	т	λ	$ r _{1} <$
SL(3,ℤ)	390,287	935,021	0.5405	$5.2 \cdot 10^{-7}$
$SL(4,\mathbb{Z})$	93,962	263,122	1.3150	$5.2 \cdot 10^{-8}$
$SL(5,\mathbb{Z})$	628,882	1,757,466	2.6500	$2.0\cdot10^{-4}$
$SAut(F_4)$	3,157,730	1,777,542	0.0100	7.4

G	n	т	λ	$ r _{1} <$
$SL(3,\mathbb{Z})$	390,287	935,021	0.5405	$5.2 \cdot 10^{-7}$
$SL(4,\mathbb{Z})$	93,962	263,122	1.3150	$5.2 \cdot 10^{-8}$
$SL(5,\mathbb{Z})$	628,882	1,757,466	2.6500	$2.0\cdot10^{-4}$
$SAut(F_4)$	3,157,730	1,777,542	0.0100	7.4

(after weeks of computation)

G	n	т	λ	$ r _{1} <$
SL(3,ℤ)	390,287	935,021	0.5405	$5.2 \cdot 10^{-7}$
$SL(4,\mathbb{Z})$	93,962	263,122	1.3150	$5.2 \cdot 10^{-8}$
$SL(5,\mathbb{Z})$	628,882	1,757,466	2.6500	$2.0 \cdot 10^{-4}$
$SAut(F_4)$	3,157,730	1,777,542	0.0100	7.4
$SAut(F_5)$	21,538,881	11,154,301		

G	n	т	λ	$ r _{1} <$
SL(3,ℤ)	390,287	935,021	0.5405	$5.2 \cdot 10^{-7}$
$SL(4,\mathbb{Z})$	93,962	263,122	1.3150	$5.2 \cdot 10^{-8}$
$SL(5,\mathbb{Z})$	628,882	1,757,466	2.6500	$2.0 \cdot 10^{-4}$
$SAut(F_4)$	3,157,730	1,777,542	0.0100	7.4
$SAut(F_5)$	21,538,881	11,154,301		

(There must be a better way!)

Problem with scaling

For *n*-variate polynomial of degree 2*d*:

$$N = \binom{n+d}{n}, \qquad m = \binom{n+2d}{n}.$$

Problem with scaling

For *n*-variate polynomial of degree 2*d*:

$$N = \binom{n+d}{n}, \qquad m = \binom{n+2d}{n}.$$

- ► interior point solvers (𝔅(𝑘№^{3.5} + 𝑘²№^{2.5})) CSDP, DSDP, Hypatia, MOSEK, SDPA, ...
- Alternating Direction Method of Multipliers CDCS, COSMO, SCS, ...
- Low rank approximation of *P*, (Scaled) dominantly diagonal matrices, Newton conjugate gradient, Primal-dual hybrid gradient...

Problem with scaling

For *n*-variate polynomial of degree 2*d*:

$$N = \binom{n+d}{n}, \qquad m = \binom{n+2d}{n}.$$

- ► interior point solvers (𝒪(𝑘№^{3.5} + 𝑘²№^{2.5})) CSDP, DSDP, Hypatia, MOSEK, SDPA, ...
- Alternating Direction Method of Multipliers CDCS, COSMO, SCS, ...
- Low rank approximation of *P*, (Scaled) dominantly diagonal matrices, Newton conjugate gradient, Primal-dual hybrid gradient...

Block-diagonalization

Represent **P** as block diagonal direct sum of psd matrices:

- 1. Chordal decomposition (exploit sparsity pattern in A_is)
- 2. Wedderburn(-Artin) decomposition for matrix algebras

(group symmetry, general *-algebras, Jordan algebras, ...)

GROUP SYMMETRY

Optimization problem

maximise: $\langle c^T, P \rangle$ subject to: $P \ge 0$ $\langle A_i, P \rangle \ge b_i, \quad i = 1, \dots, m.$

► G is a finite group

- **G** acts linearly, orthogonaly on \mathbb{R}^n (space of variables)
- **G** acts linearly, orthogonaly on \mathbb{R}^m (space of constraints)

Robinson form

$$R(x,y) = x^{6} + y^{6} - x^{4}y^{2} - y^{4}x^{2} - x^{4} - y^{4} + 3x^{2}y^{2} - x^{2} - y^{2} + 1.$$

R is invariant under the following operations on monomials

$$\alpha_1 \colon (x, y) \mapsto (y, x)$$

$$\alpha_2 \colon (x, y) \mapsto (-y, x)$$

 $\{\alpha_1, \alpha_2\}$ generate a set of 8 symmetries – the dihedral group D_4 .

Robinson form

$$R(x,y) = x^{6} + y^{6} - x^{4}y^{2} - y^{4}x^{2} - x^{4} - y^{4} + 3x^{2}y^{2} - x^{2} - y^{2} + 1.$$

R is invariant under the following operations on monomials

$$\alpha_1 \colon (x, y) \mapsto (y, x)$$

$$\alpha_2 \colon (x, y) \mapsto (-y, x)$$

 $\{\alpha_1, \alpha_2\}$ generate a set of 8 symmetries – the dihedral group D_4 .

- ▶ the symmetry of monomials leads to the symmetry of constraints,
- ▶ the symmetry of monomials leads to the symmetry of the psd matrix *P*.

Robinson form

$$R(x,y) = x^{6} + y^{6} - x^{4}y^{2} - y^{4}x^{2} - x^{4} - y^{4} + 3x^{2}y^{2} - x^{2} - y^{2} + 1.$$

R is invariant under the following operations on monomials

$$\alpha_1 \colon (x, y) \mapsto (y, x)$$

$$\alpha_2 \colon (x, y) \mapsto (-y, x)$$

 $\{\alpha_1, \alpha_2\}$ generate a set of 8 symmetries – the dihedral group D_4 .

- ▶ the symmetry of monomials leads to the symmetry of constraints,
- ▶ the symmetry of monomials leads to the symmetry of the psd matrix *P*.
- ► In this case: invariant problem = defining polynomial is invariant!

The structure of simplifications that can be derived from group symmetry does not depend on the optimization problem.

- a G-invariant subspace V is irreducible if its only G-invariant subspaces are {0} and V,
- ▶ the set of the **types** of irreducible subspaces is finite,
- ► An action-preserving map between subspaces of different types is **0**.

- a G-invariant subspace V is irreducible if its only G-invariant subspaces are {0} and V,
- ▶ the set of the **types** of irreducible subspaces is finite,
- ► An action-preserving map between subspaces of different types is **0**.

Lemma (Schur)

Suppose that M, P be two linear G-maps, $M = m_1 \oplus m_2$ for two irreducible projections m_i and such that $MPM^{-1} = P$. Then

- a G-invariant subspace V is irreducible if its only G-invariant subspaces are {0} and V,
- ▶ the set of the **types** of irreducible subspaces is finite,
- ► An action-preserving map between subspaces of different types is **0**.

Lemma (Schur)

Suppose that M, P be two linear G-maps, $M = m_1 \oplus m_2$ for two irreducible projections m_i and such that $MPM^{-1} = P$. Then

• if m_1 and m_2 are of **different types** then $P = \begin{bmatrix} c_1 I_{d_1} & 0 \\ 0 & c_2 I_{d_2} \end{bmatrix}$;

- a G-invariant subspace V is irreducible if its only G-invariant subspaces are {0} and V,
- ▶ the set of the **types** of irreducible subspaces is finite,
- ► An action-preserving map between subspaces of different types is **0**.

Lemma (Schur)

Suppose that M, P be two linear G-maps, $M = m_1 \oplus m_2$ for two irreducible projections m_i and such that $MPM^{-1} = P$. Then

▶ if
$$m_1$$
 and m_2 are of **different types** then $P = \begin{bmatrix} c_1 I_{d_1} & 0 \\ 0 & c_2 I_{d_2} \end{bmatrix}$;
▶ if $m_1 m_2$ are of the **same type**, then $P = \begin{bmatrix} c_{11} I_d & c_{12} I_d \\ c_{21} I_d & c_{22} I_d \end{bmatrix} \cong \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \otimes I_d$;

- a G-invariant subspace V is irreducible if its only G-invariant subspaces are {0} and V,
- ▶ the set of the **types** of irreducible subspaces is finite,
- ► An action-preserving map between subspaces of different types is **0**.

Lemma (Schur)

Suppose that M, P be two linear G-maps, $M = m_1 \oplus m_2$ for two irreducible projections m_i and such that $MPM^{-1} = P$. Then

▶ if
$$m_1$$
 and m_2 are of **different types** then $P = \begin{bmatrix} c_1 I_{d_1} & 0\\ 0 & c_2 I_{d_2} \end{bmatrix}$;
▶ if $m_1 m_2$ are of the **same type**, then $P = \begin{bmatrix} c_{11} I_d & c_{12} I_d\\ c_{21} I_d & c_{22} I_d \end{bmatrix} \cong \begin{bmatrix} c_{11} & c_{12}\\ c_{21} & c_{22} \end{bmatrix} \otimes I_d$;

Miracle: When $M = M_g$ are given by a linear *G*-action they can be simultaneously diagonalized to isotypical blocks!

These projections live in the group *-algebra in a basis-free form!

```
using PermutationGroups, DynamicPolynomials
using SymbolicWedderburn
G = PermGroup([perm"(1,2)", perm"(1,2,3,4)"]) # Sym(4)
@polyvar x[1:4]; basis = monomials(x, 0:2) # 15 monomials
symmetry_adapted_basis(Rational{Int}, G, VariablePermutation(), basis,
        semisimple=true)
```

Isotypical/semisimple blocks when acting on basis:

$$B_{1} = \begin{bmatrix} 1 \\ x_{1} + x_{2} + x_{3} + x_{4} \\ x_{1}x_{2} + x_{1}x_{3} + x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{4} + x_{3}x_{4} \\ x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} \end{bmatrix} B_{2} = \begin{bmatrix} x_{1} - x_{4} \\ x_{2} - x_{4} \\ x_{3}^{2} - x_{4}^{2} \\ x_{1}^{2} - x_{4}^{2} \\ x_{1}^$$

We went from 15×15 -psd constrain to sizes $(4 \times 4, 9 \times 9, 2 \times 2)$.

Definition

Group algebra $\mathbb{R}[G]$

▶ elements of $\mathbb{R}[G]$ are (finitely supported) functions $a: G \to \mathbb{R}$, usually written as $a = \sum_{g} a_{g}g$

Definition

Group algebra $\mathbb{R}[G]$

- ▶ elements of $\mathbb{R}[G]$ are (finitely supported) functions $a: G \to \mathbb{R}$, usually written as $a = \sum_g a_g g$
- ▶ multiplication is convolution: if $a = \sum_g a_g g$ and $b = \sum_g b_g g$ then

$$ab = \sum_{g} \sum_{h} a_{gh^{-1}} b_h g$$

Definition

Group algebra $\mathbb{R}[G]$

- ▶ elements of $\mathbb{R}[G]$ are (finitely supported) functions $a: G \to \mathbb{R}$, usually written as $a = \sum_g a_g g$
- ▶ multiplication is convolution: if $a = \sum_g a_g g$ and $b = \sum_g b_g g$ then

$$ab = \sum_{g} \sum_{h} a_{gh^{-1}} b_h g$$

e.g. $(1e - 2g)(g + 3g^{-1}h^2) = 1g - 2g^2 + 3g^{-1}h^2 - 6h^2$.

Definition

Group algebra $\mathbb{R}[G]$

- ▶ elements of $\mathbb{R}[G]$ are (finitely supported) functions $a: G \to \mathbb{R}$, usually written as $a = \sum_g a_g g$
- ▶ multiplication is convolution: if $a = \sum_g a_g g$ and $b = \sum_g b_g g$ then

$$ab = \sum_{g} \sum_{h} a_{gh^{-1}} b_h g$$

e.g.
$$(1e - 2g)(g + 3g^{-1}h^2) = 1g - 2g^2 + 3g^{-1}h^2 - 6h^2$$
.

Fact:

Projections onto isotypical subspaces live in $\mathbb{R}[G]$ in a matrix-free form.

Definition

Group algebra $\mathbb{R}[G]$

- ▶ elements of $\mathbb{R}[G]$ are (finitely supported) functions $a: G \to \mathbb{R}$, usually written as $a = \sum_g a_g g$
- ▶ multiplication is convolution: if $a = \sum_g a_g g$ and $b = \sum_g b_g g$ then

$$ab = \sum_{g} \sum_{h} a_{gh^{-1}} b_h g$$

e.g.
$$(1e - 2g)(g + 3g^{-1}h^2) = 1g - 2g^2 + 3g^{-1}h^2 - 6h^2$$
.

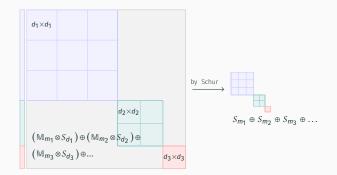
Fact:

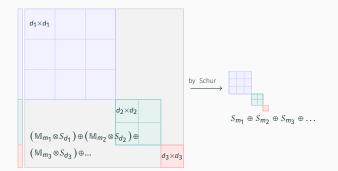
Projections onto isotypical subspaces live in $\mathbb{R}[G]$ in a matrix-free form.

$$B_{3} = \begin{bmatrix} x_{1}x_{2} - x_{1}x_{4} - x_{2}x_{3} + x_{3}x_{4} \\ x_{1}x_{3} - x_{1}x_{4} - x_{2}x_{3} + x_{2}x_{4} \end{bmatrix} \longleftrightarrow p_{3} = \frac{1}{12} \begin{pmatrix} 2(1) - (2,4,3) - (2,3,4) + 2(1,2)(3,4) - (1,3,4)$$

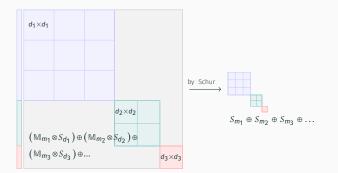
$S_{N_1}\oplus S_{N_2}\oplus S_{N_3}\oplus \dots$	

d ₁ ×d ₁				
			d₂×d₂	
(M _{m1} €	⊗S _{d1})⊕	$(\mathbb{M}_{m_2} \otimes$	S _{d2})∉	
(M _{m3} ⊂	$\otimes S_{d_3}) \oplus$			d₃×d₃





$$B'_{3} = \frac{1}{2} \begin{pmatrix} x_{1}x_{2} - x_{1}x_{4} - x_{2}x_{3} + x_{3}x_{4} + \\ x_{1}x_{3} - x_{1}x_{4} - x_{2}x_{3} + x_{2}x_{4} \end{pmatrix} \longleftrightarrow q_{3} \cdot p_{3} \quad \text{where } q_{3} = \frac{1}{2} \left(() + (3, 4) \right)$$



$$B'_{3} = \frac{1}{2} \begin{pmatrix} x_{1}x_{2} - x_{1}x_{4} - x_{2}x_{3} + x_{3}x_{4} + \\ x_{1}x_{3} - x_{1}x_{4} - x_{2}x_{3} + x_{2}x_{4} \end{pmatrix} \longleftrightarrow q_{3} \cdot p_{3} \quad \text{where } q_{3} = \frac{1}{2} \left(() + (3, 4) \right)$$

Open problem

Given an isotypical projection $p \in \mathbb{R}[G]$ how to find a projection $q \in \mathbb{R}[G]$ so that p(q) = 1?

```
# [ ... ]
symmetry_adapted_basis(Rational{Int}, G, VariablePermutation(), basis
[, semisimple=false])
```

Simple blocks when acting on basis:

$$B_{1}' = \begin{bmatrix} 1 \\ x_{1} + x_{2} + x_{3} + x_{4} \\ x_{1}x_{2} + x_{1}x_{3} + x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{4} + x_{3}x_{4} \\ x_{1}^{2} + x_{2}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} \end{bmatrix} B_{2}' = \begin{bmatrix} \frac{1}{3}(3x_{1}^{2} - x_{2}^{2} - x_{3}^{2} - x_{4}^{2}) \\ \frac{1}{3}(3x_{1}^{2} - x_{2}^{2} - x_{3}^{2} - x_{4}^{2}) \\ x_{1}x_{2} + x_{1}x_{3} + x_{1}x_{4} - x_{2}x_{3} - x_{2}x_{4} - x_{3}x_{4} \end{bmatrix}$$
$$B_{3}' = \begin{bmatrix} \frac{1}{2}(2x_{1}x_{2} - x_{1}x_{3} - x_{1}x_{4} - x_{2}x_{3} - x_{2}x_{4} - x_{3}x_{4}) \end{bmatrix}$$

Reduction: $15 \times 15 \rightarrow (4 \times 4, 9 \times 9, 2 \times 2) \rightarrow (4 \times 4, 3 \times 3, 1 \times 1)$ -psd constraints.

Optimization problem from geometric group theory¹:

Estimate the spectral gap of the group Laplacian for Aut(F₅)

If $\Delta^2 - \lambda \Delta \ge 0$ then $(0, \lambda)$ is not in the spectrum.

¹Kaluba, M., Nowak, P.W. & Ozawa, N. Aut(F₅) has property (T). *Math. Ann.* **375**, 1169–1191 (2019). https://doi.org/10.1007/s00208-019-01874-9

Optimization problem from geometric group theory¹:

Estimate the spectral gap of the group Laplacian for $Aut(F_5)$ If $\Delta^2 - \lambda \Delta \ge 0$ then $(0, \lambda)$ is not in the spectrum.

• relax $\Delta^2 - \lambda \Delta \ge 0$ as sum of squares problem:

¹Kaluba, M., Nowak, P.W. & Ozawa, N. Aut(F₅) has property (T). *Math. Ann.* **375**, 1169–1191 (2019). https://doi.org/10.1007/s00208-019-01874-9

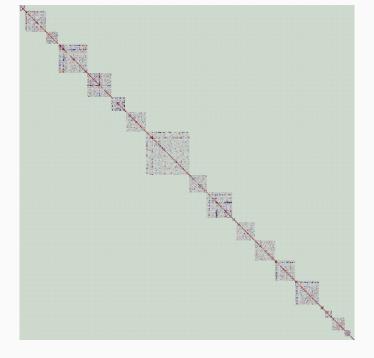
Optimization problem from geometric group theory¹:

Estimate the spectral gap of the group Laplacian for Aut(F₅)

If $\Delta^2 - \lambda \Delta \ge 0$ then $(0, \lambda)$ is not in the spectrum.

- relax $\Delta^2 \lambda \Delta \ge 0$ as sum of squares problem:
- ▶ psd-constraint of size 4 641 × 4 641, 1.1 · 10⁷ constraints
- ▶ symmetry group: $S_2 \wr S_5$ (3840 elements)
- After symmetrization:
 - ▶ 29-blocks (largest: 58 × 58) (13 232 variables in total)
 - 7230 constraints
- Solvable in 20 minutes to ε ~ 10⁻¹²!

¹Kaluba, M., Nowak, P.W. & Ozawa, N. Aut(*F*₅) has property (T). *Math. Ann.* **375**, 1169–1191 (2019). https://doi.org/10.1007/s00208-019-01874-9



1998 - 1998	diagonalized	d psd (\subset 4	48 imes 448)		
	Or	iginal psc	l constraint (4	4 641 × 4 641)	

THE MAIN RESULT

Let $G_n = SL_n(\mathbb{Z})$ (or $G_n = Aut(F_n)$). There exists $\lambda_n > 0$ such that

 $\Delta_n^2 - \lambda_n \Delta_n \in \Sigma^2 I[G_n],$

i.e. **G** has property (T) for for all $n \ge 3$ ($n \ge 6$, respectively), with

$$\sqrt{\frac{2\lambda}{|S|}} \leq \kappa(G,S).$$

Let $G_n = SL_n(\mathbb{Z})$ (or $G_n = Aut(F_n)$). There exists $\lambda_n > 0$ such that

 $\Delta_n^2 - \lambda_n \Delta_n \in \Sigma^2 I[G_n],$

i.e. **G** has property (T) for for all $n \ge 3$ ($n \ge 6$, respectively), with

$$\sqrt{\frac{2\lambda}{|S|}} \leq \kappa(G,S).$$

Proof.

Find a single SOS decomposition for $\Delta_k^2 - \lambda_k \Delta_k \in \mathbb{R}[G_k]$ for some small k.

Let $G_n = SL_n(\mathbb{Z})$ (or $G_n = Aut(F_n)$). There exists $\lambda_n > 0$ such that

 $\Delta_n^2 - \lambda_n \Delta_n \in \Sigma^2 I[G_n],$

i.e. **G** has property (T) for for all $n \ge 3$ ($n \ge 6$, respectively), with

$$\sqrt{\frac{2\lambda}{|S|}} \leq \kappa(G,S).$$

Proof.

- Find a single SOS decomposition for $\Delta_k^2 \lambda_k \Delta_k \in \mathbb{R}[G_k]$ for some small k.
- "Cover" $\Delta_n^2 \lambda_n \Delta_n$ via conjugates of $\Delta_k^2 \lambda_k \Delta_k$ under the action of the Weyl group

Let $G_n = SL_n(\mathbb{Z})$ (or $G_n = Aut(F_n)$). There exists $\lambda_n > 0$ such that

 $\Delta_n^2 - \lambda_n \Delta_n \in \Sigma^2 I[G_n],$

i.e. **G** has property (T) for for all $n \ge 3$ ($n \ge 6$, respectively), with

$$\sqrt{\frac{2\lambda}{|S|}} \leq \kappa(G,S).$$

Proof.

- Find a single SOS decomposition for $\Delta_k^2 \lambda_k \Delta_k \in \mathbb{R}[G_k]$ for some small k.
- Cover" Δ²_n − λ_nΔ_n via conjugates of Δ²_k − λ_kΔ_k under the action of the Weyl group
- Hope that the remainder is a sum of squares.