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Cayley Graphs

Definition (Cayley graph)
Let G = (S|R) be a (finitely presented) group. Cayley graph Cay(G, S) is a
graph (V,E), where

V=G and
(g,h) €E < gh'eSs.

> Cay(G, S) are very symmetric: links of all vertices are isomorphic.
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Group algebras

Convention: G = (S| R) is a finitely presented group generated by a fixed
symmetric generating set (i.e. S™' = S).

Definition (Group algebra)

> eclements of R[G] are (finitely supported) functions a: G — R, usually
written as a = >4 agg

> multiplication is convolution: if a = 3\, agg and b = > byg then
ab = > > agn-1bsg
g h

> the involution *: R[G] — R[G] induced by g — g~ and trivial on R
gives R[G] the structure of x-algebra, e.g.

(le—2g +3g'h*)* =1e—-2g~ "'+ 3h %g.
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Group Laplacian

Definition
A(G,S) = A(Cay(G,S)) = [S](ld — Ms)
(identity minus random walk operator);

A=|Sle- > geR[G]

geS

» the operator A is k-invariant,
» spectrum of A is real and non-negative;

» the second eigenvalue A; is called the spectral gap

0=Ap<Ay<---



Property (T)



Property (T)

> For a unitary representation 1r: G — U(J{) of G on a Hilbert space
denote by
H™={veH:m(g)v=vforallg € G}

the (closed) subspace of 1r-invariant vectors.



Property (T)

> For a unitary representation 1r: G — U(J{) of G on a Hilbert space
denote by
H™={veH:m(g)v=vforallg € G}

the (closed) subspace of 1r-invariant vectors.

(@) —Ellar: E€ (H™*



Property (T)

> For a unitary representation 1r: G — U(J{) of G on a Hilbert space
denote by
H™={veH:m(g)v=vforallg € G}

the (closed) subspace of 1r-invariant vectors.

{maxun(g)E “Elly Ee (H™* }
ges



Property (T)

> For a unitary representation 1r: G — U(J{) of G on a Hilbert space
denote by
H™={veH:m(g)v=vforallg € G}

the (closed) subspace of 1r-invariant vectors.

inf <{max||7T(g)§— Ellar: € € (ﬂ")L}

lgl=1 L g&s



Property (T)

> For a unitary representation 1r: G — U(J{) of G on a Hilbert space
denote by
H™={veH:m(g)v=vforallg € G}
the (closed) subspace of 1r-invariant vectors.
» We define

k(G,S, 1) = inf {maXIITF(Q)E— Ellgr: & e (ﬂ")L}

lgl=1 L g&s



Property (T)

> For a unitary representation 1r: G — U(J{) of G on a Hilbert space
denote by
H™ ={veH:m(g)v=vforall g € G}

the (closed) subspace of 1r-invariant vectors.

> We define

k(G,S, ) = inf {maxHTr(g)E— Ellar: € € (ﬂ")L}

lgl=1 L g&s

Definition
The Kazhdan's constant (G, S) is defined as

k(G,S) = irT1rf Kk(G,S, 1)

over all orthogonal representations 71t of G.



Property (T)

> For a unitary representation 1r: G — U(J{) of G on a Hilbert space
denote by
H™ ={veH:m(g)v=vforall g € G}
the (closed) subspace of 1r-invariant vectors.

> We define

k(G,S, ) = inf {maxHTr(g)E— Ellar: € € (ﬂ")L}

lgl=1 L g&s

Definition
The Kazhdan's constant (G, S) is defined as

k(G,S) = irT1rf Kk(G,S, 1)

over all orthogonal representations 1t of G. We say that G has the
Kazhdan's property (T) if and only if there exists a (finite) generating set S
such that k(G,S) > 0.
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Property (T) - meaningless gist

Property (T) is a hard analytic property:
the constant k(G,S) = 0 is a quantitative indicator of the property;
the exact value of k does depend on S; its positivity does not;

estimating the constant is very hard;
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It is known that SL(n, Z) has property (T) iff n > 3;
SAut(F,) is a noncommutative analogue of SL(n, Z);
SAut(F;) does not have (T)... (McCool 1989);

Does SAut(F,) have (T) for n > 4? (Lubotzky 1994, Lubotzky-Pak 2001,
Fisher 2006, Bridson-Vogtmann 2006, Breuillard 2014, ...);

2017: SAut(Fs) has (T): a constructive (computer assisted) proof (joint
with PW.Nowak and N.Ozawa)

2018: SAut(F,) has (T): a constructive (computer assisted) proof (joint
with PW.Nowak and D.Kielak).
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Theorem (Lubotzky & Pak, 2000)
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Property (T) and SAut(F,)

Random group elements in finite groups: estimating mixing time of the
Product Replacement Algorithm depends on the Kazhdan’s constant of
SAut(F,), the special authomorphism group of the free group:

Theorem (Lubotzky & Pak, 2000)
Let K be a finite group generated by kR < n elements. If SAut(F,) has

property (T) with constant k = k(SAut(F,), {transvections}) > 0, then PRA
walk has fast mixing time, i.e.
<€ for > 16 — log i

tv

HQ(9>

(Q(g) is a random walk on the graph T}, starting at generating n-tuple (g)).

Note
We do observe fast mixing time in practice for large n.
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Property (T) and A

» Connection to the spectral gap of A: k(G,S) can be estimated as

2,

< k(G,S).
|S| (6,5)

Corollary
We have A € [0,A1) < A? —AA > 0, i.e. if there exists A > 0 such that
A? — AA = 0, then G has property (T) with

2A

— < K(G,S).
S|



How to prove that A> —AA>07?



Given a polynomial f € R[x] is f globally non-negative?



Given a polynomial f € R[x] is f globally non-negative?

Easy to check refutation (find an x € R" such that f(x) < 0).

Does there exist a witness for confirmation that is also
easy to verify?
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Positivity

- analytic: the value f(x) > 0 for every x e R

- algebraic: f € R[x] admits an algebraic structure which forces it to be
positive

f=ax?+bx+c>0ifand only ifa>0and b2 - 4ac<0.
We say that f admits a sum of squares decomposition when

f= Zf’z for some f; € R[x].
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Hilbert's 17th problem

Theorem (Hilbert, 1888)

An everywhere non-negative polynomial p € ¥2R[x4,...,Xp] (is a sum of
squares) if and only if either

- n =1 (univariate polynomial), or
- degp =2 (quadratic polynomial), or
- n=2and degp = 4 (bivariate quartic).

Example (Motzkin, 1967)
x4y2 + x2y* —3x2y2 +1> 0 but not SOS.
Theorem (Artin, 1924)
p>0 < 3q: ¢°p € Z°R[xX1,...Xn]

(i.e. pis a sum of squares of rational functions).

Example

(x2 +y2 +1)(x‘*y2 +x2y% —3x2y2 +1) is a sum of squares!



Analytic and algebraic positivity

- p € R[x] is positive iff p(t) > 0 for all t € R" = analytic positivity.
- p e R[x] is positive iff p is a sum of squares (of rational functions)
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Analytic and algebraic positivity

- p € R[x] is positive iff p(t) > 0 for all t € R" = analytic positivity.
- p e R[x] is positive iff p is a sum of squares (of rational functions)
= g2p € ¥2R[x] = algebraic positivity.
Problem
How to find such sum of squares (SOS) decomposition?
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f = ax* + 63y — 7x%y% — 2xy> + 10y*
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S0S decompositions

We can write f as a quadratic function of monomials.
Example
f = ax* + 63y — 7x%y% — 2xy> + 10y*

can be written as

4 2 —A][x2
f=pwy?]| 2 -7+22 ||y =xTP()x
=3 = 10 ||y2

P is so called Gramm matrix for f.
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Quadratic function of monomials

Lemma
f admits a sum of squares decomposition iff there exists a positive

semidefinite Gramm matrix for some (sub)basis x of R[Xq,...Xn].

If P is positive semidefinite, then P= Q" Q (e.g. by Cholesky) and
f=x"Px=x"Q"-ax=(Qx)"-(Qx).
Note: Q is not unique, especially in the rank deficient case; the number of

squares equals the rank of Q.

Example
For example for A = 6 we have
4 2 -6 0 2 1
PA=|2 5 -1/=Q"-Q forQ:[ ]
2 1 -3
-6 -1 10

Therefore f admits a SOS decomposition
f= (2xy+y2)2 +(26 +xy—3y2)2.
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Mathematical Programming

Linear programming:

- optimise linear functional

- on the set constrained by hyperplanes (polytope)
Semi-definite programming

- optimise linear functional
- on a polytope intersected with the cone of PSD matrices (spectrahedron)
- weak duality, non-unique solutions

- even feasibility is a hard problem!
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optimisation variables: a,bq, b, ¢, A.

Example (PSD problem)

maximise: A

subjectto: A>0
c=1-1
by+by =4
a=2

C bz
>0
[b1 a




PSD problem formulation

optimisation variables: a,bq, b, ¢, A.

Example (PSD problem)

maximise: A

subjectto: A>0

b1+b2=4
a=2

C bz
5, 7|0

tries to maximise A as long as (2x2 +4x+1)— A > 0.



Semidefinite program

min  (C,P)
pesN
subjectto: (A, Py=b;, i=12,....m

P>0.



Semidefinite program

min  (C,P)
pesSN
subjectto: (A, Py=b;, i=12,....m
P>0.

Is f(x) = 4x* + 4x3y — 7x2y2 — 2xy3 + 10y* always non-negative? — sum of
squares relaxation: Does there exist psd matrix P s.t.

f=xTPx=(xx",P)?
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C[x4,...,%q], p — P (conjugation on coefficients)

C[z,z7"] (Laurent polynomials) Sh_ yazf — SF__\ @pz*

C[Z] = C[z,z7"] (the complex group algebra of integers)

R{X,...,Xq), p — reverse(p) + linear extension (free polynomial algebra,
j.e. variables don't commute!)

Mpxn, M — M* (real/complex matrix algebra)



NC positivity: x-algebras

To state Positivstellensatz in the NC-setting we need algebras with
involution (i.e. x-algebras).

Example
> R[X1,...,Xq],p—p
> C[X1,...,Xq], p — P (conjugation on coefficients)
» C[z,z7'] (Laurent polynomials) SF_ yapzt — Sk, Grz *
> C[Z] = C[z,z7"] (the complex group algebra of integers)
> R(Xq,...,Xq), p — reverse(p) + linear extension (free polynomial algebra,

j.e. variables don't commute!)

> Mpxn, M — M* (real/complex matrix algebra)

> R[G], g — g+ linear extension (real group algebra).
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NC sums of squares

Definition
If A is a *x-algebra, then the cone of sum of squares is defined as

324 = {iff“g’;: &e€A, ne N]».

Note: each p € 324 is fixed by *.

A:IS\efZg% (2S|e29*+g) :%2(29,9*,9)

ges ges ges

:% >(1-9)*(1-9)

ges
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Example (Free polynomial algebra)

For a x-invariant element a = zg agg € R{xy, ...
all n € N and for every choice of matrices A = (A,,...,Aq) (each

Ai € M,(R)), the homomorphism @, defined by

,Xq) we write a = 0 if for
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a~ > agpa(g) > 0.
9



NC positivity

Example (Free polynomial algebra)

For a x-invariant element a = zg agg € R{xy, ...
all n € N and for every choice of matrices A = (A,,...,Aq) (each

Ai € M,(R)), the homomorphism @, defined by

,Xq) we write a = 0 if for

Xj —A;
takes a to a positive-semidefinite matrix:

a~ > agpa(g) > 0.
9

» |f there are non-trivial relations between x;s (or the x-involution on A
is not trivial) we need the matrices A,,...,A, to be compatible: this
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NC positivity

Example (Free polynomial algebra)

For a *-invariant element a = zg agg € R(xq,...,%q) we write a > 0 if for
all n € N and for every choice of matrices A = (A,,...,Aq) (each

Ai € M,(R)), the homomorphism @, defined by

Xj —A;
takes a to a positive-semidefinite matrix:

a~ > agpa(g) > 0.
9

» |f there are non-trivial relations between x;s (or the x-involution on A
is not trivial) we need the matrices A,,...,A, to be compatible: this
leads to *-algebra representations.

» This corresponds directly to evaluation of polynomials: the only
representations of polynomial rings are

@:(p) = p(t) fortinRE.



NC-Positivstellensatz



NC-Positivstellensatz

Theorem (Abstract Positivstellensatz: K. Schmiidgen, ...)
For a x-invariant element a € A the following conditions are equivalent.

1. a = 0 (with respect to all x-representations of A),

2. a+é&u e XA forall € > 0, where u is an interior point of 32 A.
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Recall that for a group G:

» property (T) is hard analytic;
» but (T) reduces to the positivity of A2 — AA in R[G]
» NC-Positivstellensatz gives sums of squares approach

(as long as we know some interior points u)
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NC-Positivstellensatz for R[G]

> £>0 < m(&) »=0inevery x-representation of R[G]
> Z’R[G] = {3;&*&: & € RG]}

Theorem (Positivstellensatz)
Assume that u is an interior point of 22R[G]. For any x-invariant & € R[G]

E>0 < &+ eue3?R[G] forall € > 0.

Example
1e is an interior point of 32R[G], i.e.

Is A% —AA + ce € 32R[G] forall € (and some A > 0)?

This of no use for us: SOS decompositions A2 — AA + ge = > E¥E may be
very diffrent for different «.
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NC-Positivstellensatz for I[G]

> LetI[G] = {29 agg: >g0g = 0} be the augmentation ideal.
Lemma (Ozawa, 2016)
A is an interior point of 32I[G] = I[G] n 32R[G], i.e. for any & = €* € I[G],

E>0 < &+eAeXG] foralle>o0.

Example
If we can show that A2 — AA + gA = > &&; for a single fixed &, then

A2—(A-g)A+eA=D>EE+ed (1-5)*(1-s) € 32[G]

SES

for all € simultanuously!
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Property (T) by semi-definite optimization

1. Pick G = (S§|R);
2. SetE=(e,g1,92,..-,9n), gi € By(e,S) (d=2,3,...);
3. Solve the problem (numerically):
maximize: A
subjectto: P >0, P& Mg
(A% = AA); = (E¥PET), = (M, P), forallte E*E

4. Compute v/P = Q = [Ge, - - -, qg, ] (columns of matrix Q)

5. Finally: & = (E,@ € R[G] such that supp(&g) C E satisfy

A2 —AA = > EYE,.

geE

(Modulo certification of the result.)



G n m A [Iril4 <

SL(3,2) 390,287 935,021 0.5405 5.2-1077
SL(4,7) 93,962 263,122 1.3150 5.2-10°8
SL(5,2) 628,882 1,757,466  2.6500 2.0-107*
SAut(Fs) 3,157,730 1,777,542  0.0100 7.4
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SL(3,72) 390,287 935,021 0.5405 5.2-107"
SL(4,2) 93,962 263,122 1.3150 52-10"8
SL(5,7) 628,882 1,757,466  2.6500 2.0 - 1074

SAut(Fs) 3,157,730 1,777,542 0.0100 7.4
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G n m A lIrll1 <

SL(3,72) 390,287 935,021 0.5405 5.2-107"
SL(4,2) 93,962 263,122 1.3150 52-10"8
SL(5,7) 628,882 1,757,466  2.6500 2.0 - 1074

SAut(Fs) 3,157,730 1,777,542 0.0100 7.4
SAut(Fs) 21,538,881 11,154,301

(There must be a better way!)
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Problem with scaling

For n-variate polynomial of degree 2d:
N_(n+d>’ m_(n+2d>.
n n
> interior point solvers (O (mN3> + m2N2>))

CSDP, DSDP, Hypatia, MOSEK, SDPA, ...

» Alternating Direction Method of Multipliers
CDCS, COSMO, SCS, ...

> Low rank approximation of P, (Scaled) dominantly diagonal matrices,
Newton conjugate gradient, Primal-dual hybrid gradient...

Block-diagonalization

Represent P as block diagonal direct sum of psd matrices:

1. Chordal decomposition (exploit sparsity pattern in A;s)

2. Wedderburn(-Artin) decomposition for matrix algebras

(group symmetry, general *-algebras, Jordan algebras, ...)



GROUP SYMMETRY




Invariant problems

Optimization problem

maximise: (c", P)
subjectto: P >0
(Ai,P) = bj, i=1,...,m.

> G is a finite group
> G acts linearly, orthogonaly on R" (space of variables)

> G acts linearly, orthogonaly on R™ (space of constraints)



Group symmetry invariance: Example

Robinson form

R(x,y) = x® +y® — x%y? —y*x® —x* —y* +3x%y2 — x> —y? + 1.
R is invariant under the following operations on monomials

&p: (X, y) = (v, %)
(Lo (ny) = (_y!X)

{1, &3} generate a set of 8 symmetries - the dihedral group Dy,
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Group symmetry invariance: Example

Robinson form
ROGY) = X8+ Y8 —x'y? —y'x® —X* —y* + 32 — x> —y? + 1.
R is invariant under the following operations on monomials

&p: (X, y) = (v, %)
(Lo (ny) = (_y!X)

{1, &3} generate a set of 8 symmetries - the dihedral group Dy,
» the symmetry of monomials leads to the symmetry of constraints,

» the symmetry of monomials leads to the symmetry of the psd matrix P.

» |n this case: invariant problem = defining polynomial is invariant!



Misleading quote of the day

The structure of simplifications that can be derived from
group symmetry does not depend on the optimization
problem.
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are {0} and V,
> the set of the types of irreducible subspaces is finite,
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When a finite G acts linearly on R"
> a G-invariant subspace V is irreducible if its only G-invariant subspaces
are {0} and V,
> the set of the types of irreducible subspaces is finite,
> An action-preserving map between subspaces of different types is 0.

Lemma (Schur)

Suppose that M, P be two linear G-maps, M = my & m, for two irreducible
projections m; and such that MPM~" = P. Then

. . Gl 0
» if my; and m, are of different types then P = [ 10‘“ ol };
21d;

. cnlg  Cppl tn C
> if my m, are of the same type, then P = Wd o FRld )t 2 g et
Cald  Calg 1 C»

Miracle: When M = My are given by a linear G-action they can be
simultaneously diagonalized to isotypical blocks!
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P is invariant under group symmetries < MgPMg*1 = Pforeveryge G =
P admits a block-diagonal structure.

Snq ® SNy ®SN3 ©...

These projections live in the group *-algebra in a basis-free form!
g g



Example: SymbolicWedderburn. j1

using PermutationGroups, DynamicPolynomials

using SymbolicWedderburn

G = PermGroup([perm"(1,2)", perm"(1,2,3,4)"]1) # Sym(4)

@polyvar x[1:4]; basis = monomials(x, 0:2) # 15 monomials

symmetry_adapted_basis(Rational{Int}, G, VariablePermutation(), basis,
semisimple=true)

Isotypical/semisimple blocks when acting on basis:

X1 — X4
X2 — X4
X3 — X4
! X% —x2
2 4
B — X1+ X2 + X3+ Xy B, — XZ XZ By — X1X2 — X1X4 — X2X3 + X3X4
17 | x1%2 + X1X3 + X1X4 + X2X3 + XoX4 + X3X4 B= 377 37 | xiX3 — X1X4 — X2X3 + XoX4
X1 — X,
X3+ +X5+x 1%
X1X2 — X3X4
X1X3 — X2 X4
X1X4 — X2X3

We went from 15 X 15-psd constrain to sizes (4 X 4,9 X 9,2 X 2).
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Group algebra and projections

Definition
Group algebra R[G]

> eclements of R[G] are (finitely supported) functions a: G — R, usually
written as a = 35 agg

> multiplication is convolution: if a = 3\, agg and b = > bgg then
ab=> > agh-1bng
g h
eg (le—2g)(g +3g 'h?) =1g — 2g®> + 3g 'h? — 6h?.

Fact:
Projections onto isotypical subspaces live in R[G] in a matrix-free form.

— Pp3=—|132-042)-(1,43) +1,3) (2,4~

X1X2 — X1Xy — X2X3 + X3X4
12 \ (1,2,3) +2(1,4)(2,3) — (1,2,4) — (1,3,4)

1 ( 2() — (2,4,3) — (2,3,4) +2(1,2)(3,4)— )
X1X3 — X1Xy — XoX3 + Xo X4



Sny ®Sh, ®SN3 ®...
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d1xdq

by Schur
—_—

dy xdy
Sm1 ® Smy ® Smy @ ...

(Mmy ®Sa; ) & (Mim, ®54, ) &

(Mm;®Sq; ) ®... d3xd3

2

B, - () —Gy-ps where gy = > (0 + (3,4))

X1X3 —X1X4 —X2X3 X2 X4



d1xdq

by Schur
—
dyxd
Sm1 ® Smy ® Smy @ ...
(Mim ©S47) @ (Mimy S, ) @

(Mm;®Sq; ) ®... s

B . 1
B3 Y X1X2 —X1X4 —X2X3 +X3X4 + . q3 . p3 v\/here q3 _J (() I (3' 4))
2 X1X3 —X1X4 —X2X3 X2 X4 2
Open problem

Given an isotypical projection p € R[G] how to find a projection g € R[G]
so that p(q) =17



Example: SymbolicWedderburn. j1

#[... 1]
symmetry_adapted_basis(Rational{Int}, G, VariablePermutation(), basis
[, semisimple=false])

Simple blocks when acting on basis:

1
8 - X1+X2 + X3+ x4 5
17 | x1x2 + X1X3 + X1Xg4 + X2X3 + X2X4 + X3X44

2 2 2

X+ X5 + X5 +Xg

1<3>(1 — X3 — X3 —X4)
§(3x% 7)(% 7)(% 7)(12,)
X1X2 + X1X3 + X1X4 — X2X3 — X2X4 — X3X4

N~
]

’
By = [% (2X1X2 — X1X3 — X1X4 — X2X3 — X2X4 + 2X3X4)}

Reduction: 15X 15 — (4 X 4,9 X 9,2 X 2) — (4 X 4,3 X 3,1 X 1)-psd constraints.



Large scale example

Optimization problem from geometric group theory':

Estimate the spectral gap of the group Laplacian for Aut(Fs)
If A2 — AA > 0 then (0,A) is not in the spectrum.

TKaluba, M., Nowak, PW. & Ozawa, N. Aut(Fs) has property (T). Math. Ann. 375, 1169-1191 (2019).
https://doi.org/10.1007/500208-019-01874-9
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Large scale example

Optimization problem from geometric group theory':

Estimate the spectral gap of the group Laplacian for Aut(Fs)
If A2 — AA > 0 then (0,A) is not in the spectrum.

relax A2 — AA > 0 as sum of squares problem:
psd-constraint of size 4641 X 4641, 1.1- 107 constraints
symmetry group: S, 1 Ss (3840 elements)

After symmetrization:

> 29-blocks (largest: 58 x 58) (13232 variables in total)
» 7230 constraints

vy VY

v

Solvable in 20 minutes to € ~ 10721

TKaluba, M., Nowak, PW. & Ozawa, N. Aut(Fs) has property (T). Math. Ann. 375, 1169-1191 (2019).
https://doi.org/10.1007/500208-019-01874-9
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.« diagonalized psd (C 448 x 448)

Original psd constraint (4 641 X 4 641)



THE MAIN RESULT
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Theorem (Kaluba-Kielak-Nowak, 2018)
Let G, = SL,(Z) (or G, = Aut(F,)). There exists A, > 0 such that

A2 — A\, € S2[G,],

i.e. G has property (T) for for all n = 3 (n > 6, respectively), with

[2A
E < K(G,S)

Proof.
> Find a single SOS decomposition for AZ — ArAg € R[Gg] for some small
k.
> “Cover” A2 — A,A, via conjugates of A7 — ArAg under the action of the
Weyl group
> Hope that the remainder is a sum of squares. O
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