
Group Laplacians



Cayley Graphs

Definition (Cayley graph)
Let G = 〈S|R〉 be a (finitely presented) group. Cayley graph Cay(G,S) is a
graph (V, E), where

V = G and
(g,h) ∈ E ⇐⇒ gh−1 ∈ S.

ñ Cay(G,S) are very symmetric: links of all vertices are isomorphic.
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Group algebras

Convention: G = 〈S |R〉 is a finitely presented group generated by a fixed
symmetric generating set (i.e. S−1 = S).

Definition (Group algebra)

ñ elements of R[G] are (finitely supported) functions a : G→ R, usually
written as a =

∑
g agg

ñ multiplication is convolution: if a =
∑

g agg and b =
∑

g bgg then

ab =
∑
g

∑
h
agh−1bhg

ñ the involution ∗ : R[G]→ R[G] induced by g, g−1 and trivial on R
gives R[G] the structure of ∗-algebra, e.g.

(1e− 2g+ 3g−1h2)∗ = 1e− 2g−1 + 3h−2g.
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Group Laplacian

Definition

∆(G,S) = ∆(Cay(G,S)) = |S|(Id−MS)

(identity minus random walk operator);

∆ = |S|e−∑
g∈S

g ∈ R[G]

ñ the operator ∆ is ∗-invariant,
ñ spectrum of ∆ is real and non-negative;
ñ the second eigenvalue λ1 is called the spectral gap

0 = λ0 à λ1 à · · ·
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Property (T)

ñ For a unitary representation π : G→U(H ) of G on a Hilbert space
denote by

Hπ =
{
v ∈H : π(g)v = v for all g ∈ G

}
the (closed) subspace of π-invariant vectors.

ñ We define

κ(G,S, π) = inf
‖ξ‖=1

{
max
g∈S
‖π(g)ξ − ξ‖H : ξ ∈ (Hπ)⊥

}

Definition
The Kazhdan’s constant κ(G,S) is defined as

κ(G,S) = inf
π
κ(G,S, π)

over all orthogonal representations π of G. We say that G has the
Kazhdan’s property (T) if and only if there exists a (finite) generating set S
such that κ(G,S) > 0.
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Property (T) – meaningless gist

ñ Property (T) is a hard analytic property;

ñ the constant κ(G,S) á 0 is a quantitative indicator of the property;
ñ the exact value of κ does depend on S; its positivity does not;
ñ estimating the constant is very hard;
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Property (T) – examples

ñ It is known that SL(n,Z) has property (T) i� n á 3;

ñ SAut(Fn) is a noncommutative analogue of SL(n,Z);
ñ SAut(F3) does not have (T)... (McCool 1989);
ñ Does SAut(Fn) have (T) for n á 4? (Lubotzky 1994, Lubotzky-Pak 2001,

Fisher 2006, Bridson-Vogtmann 2006, Breuillard 2014, ...);
ñ 2017: SAut(F5) has (T): a constructive (computer assisted) proof (joint

with P.W.Nowak and N.Ozawa)
ñ 2018: SAut(Fn) has (T): a constructive (computer assisted) proof (joint

with P.W.Nowak and D.Kielak).
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Property (T) and SAut(Fn)

Random group elements in finite groups:

estimating mixing time of the
Product Replacement Algorithm depends on the Kazhdan’s constant of
SAut(Fn), the special authomorphism group of the free group:

Theorem (Lubotzky & Pak, 2000)
Let K be a finite group generated by k ≤ n elements. If SAut(Fn) has
property (T) with constant κ = κ(SAut(Fn), {transvections}) > 0, then PRA
walk has fast mixing time, i.e.∥∥∥Qt(g) − U∥∥∥tv à ε for t á 16

κ2
log
|Γn|
ε

(Q(g) is a random walk on the graph Γn starting at generating n-tuple (g)).

Note
We do observe fast mixing time in practice for large n.
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Property (T) and ∆

ñ Connection to the spectral gap of ∆: κ(G,S) can be estimated as√
2λ1
|S| à κ(G,S).

Corollary
We have λ ∈ [0, λ1) ⇐⇒ ∆2 − λ∆ á 0, i.e. if there exists λ > 0 such that∆2 − λ∆ á 0, then G has property (T) with√

2λ
|S| à κ(G,S).
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How to prove that ∆2 − λ∆ á 0 ?



Given a polynomial f ∈�[x] is f globally non-negative?

• Easy to check refutation (find an x ∈�n such that f (x) < 0).
• Does there exist a witness for confirmation that is also

easy to verify?

0
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Positivity

• analytic: the value f (x) ⩾ 0 for every x ∈�n

• algebraic: f ∈�[x] admits an algebraic structure which forces it to be
positive

f = ax2 +bx+ c ⩾ 0 if and only if a ⩾ 0 and b2 − 4ac ⩽ 0.
We say that f admits a sum of squares decomposition when

f =
¼
i
f2i for some fi ∈�[x].
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Hilbert’s 17th problem

Theorem (Hilbert, 1888)

An everywhere non-negative polynomial p ∈ Î2�[x1, . . . ,xn] (is a sum of
squares) if and only if either

• n = 1 (univariate polynomial), or
• degp = 2 (quadratic polynomial), or
• n = 2 and degp = 4 (bivariate quartic).

Example (Motzkin, 1967)

x4y2 + x2y4 − 3x2y2 + 1 ⩾ 0 but not SOS.

Theorem (Artin, 1924)

p ⩾ 0 ⇐⇒ ∃q : q2p ∈ Î2�[x1, . . .xn]

(i.e. p is a sum of squares of rational functions).

Example(
x2 + y2 + 1

)(
x4y2 + x2y4 − 3x2y2 + 1

)
is a sum of squares!
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Example(
x2 + y2 + 1

)(
x4y2 + x2y4 − 3x2y2 + 1

)
is a sum of squares!
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Analytic and algebraic positivity

• p ∈�[x] is positive iff p(t) ⩾ 0 for all t ∈�n =⇒ analytic positivity.
• p ∈�[x] is positive iff p is a sum of squares (of rational functions)
=⇒ q2p ∈ Î2�[x] =⇒ algebraic positivity.

Problem
How to find such sum of squares (SOS) decomposition?

3
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SOS decompositions

We can write f as a quadratic function of monomials.

Example

f = 4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

can be written as

f =
[
x2,xy,y2

]
4 2 −Ý
2 −7+ 2Ý −1
−Ý −1 10



x2

xy
y2

 = xTP(Ý)x

P is so called Gramm matrix for f .
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Quadratic function of monomials

Lemma
f admits a sum of squares decomposition iff there exists a positive
semidefinite Gramm matrix for some (sub)basis x of �[x1, . . .xn].

If P is positive semidefinite, then P = QTQ (e.g. by Cholesky) and

f = xTPx = xTQT ·Qx = (Qx)T · (Qx) .

Note: Q is not unique, especially in the rank deficient case; the number of
squares equals the rank of Q.

Example
For example for Ý = 6 we have

P(Ý) =


4 2 −6
2 5 −1
−6 −1 10

 = QT ·Q for Q =

[
0 2 1
2 1 −3

]

Therefore f admits a SOS decomposition

f =
(
2xy + y2

)2
+
(
2x2 + xy − 3y2

)2
.
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Mathematical Programming

Linear programming:

• optimise linear functional
• on the set constrained by hyperplanes (polytope)

Semi-definite programming

• optimise linear functional
• on a polytope intersected with the cone of PSD matrices (spectrahedron)
• weak duality, non-unique solutions
• even feasibility is a hard problem!

6
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PSD problem formulation

optimisation variables: a,b1,b2,c,Ý.

Example (PSD problem)

maximise: Ý

subject to: Ý ⩾ 0
c = 1−Ý
b1 +b2 = 4
a = 2[
c b2
b1 a

]
≽ 0

tries to maximise Ý as long as (2x2 + 4x+ 1)−Ý ⩾ 0.
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Semidefinite program

min
P∈SN

⟨C,P⟩

subject to: ⟨Ai,P⟩ = bi, i = 1,2, . . . ,m
P ⪰ 0.

Is f (x) = 4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4 always non-negative? → sum of
squares relaxation: Does there exist psd matrix P s.t.

f = xTPx = ⟨xxT ,P⟩?

Feasibility problem with

X =


x2
xy
y2

 ,XX⊤ =


x4 x3y x2y2
· x2y2 xy3
· · y4

 ,Ax4 =


1 0 0
· 0 0
· · 0

 ,Ax3y =

0 1 0
· 0 0
· · 0

 , etc.

b = (bi) is the vector of coefficients of f .
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NC positivity: ∗-algebras

To state Positivstellensatz in the NC-setting we need algebras with
involution (i.e. ∗-algebras).

Example

ñ R[x1, . . . , xd], p, p
ñ C[x1, . . . , xd], p, p (conjugation on coe�cients)
ñ C[z, z−1] (Laurent polynomials)

∑N
k=−N akzk ,

∑N
k=−N akz−k

ñ C[Z] � C[z, z−1] (the complex group algebra of integers)
ñ R〈x1, . . . , xd〉, p, reverse(p) + linear extension (free polynomial algebra,

i.e. variables don’t commute!)
ñ Mn×n, M, M∗ (real/complex matrix algebra)
ñ R[G], g, g−1 + linear extension (real group algebra).
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NC sums of squares

Definition
IfA is a ∗-algebra, then the cone of sum of squares is defined as

Σ2A=


n∑
i=1
ξ∗i ξi : ξi ∈A, n ∈ N

 .

Note: each p ∈ Σ2A is fixed by ∗.

∆ = |S|e−∑
g∈S

g = 12

2|S|e−∑
g∈S

g∗ + g
 = 1

2
∑
g∈S

(
2e− g∗ − g

)
= 12

∑
g∈S
(1− g)∗(1− g)
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NC positivity

Example (Free polynomial algebra)
For a ∗-invariant element a =

∑
g agg ∈ R〈x1, . . . , xd〉 we write a á 0 if for

all n ∈ N and for every choice of matrices A = (A1, . . . ,Ad) (each
Ai ∈ Mn(R)), the homomorphism ϕA defined by

xi ,Ai

takes a to a positive-semidefinite matrix:

a,
∑
g
agϕA(g) å 0.

ñ If there are non-trivial relations between xis (or the ∗-involution onA
is not trivial) we need the matrices A1, . . . ,An to be compatible: this
leads to ∗-algebra representations.

ñ This corresponds directly to evaluation of polynomials: the only
representations of polynomial rings are

ϕt(p) = p(t) for t in Rd.



NC positivity

Example (Free polynomial algebra)
For a ∗-invariant element a =

∑
g agg ∈ R〈x1, . . . , xd〉 we write a á 0 if for

all n ∈ N and for every choice of matrices A = (A1, . . . ,Ad) (each
Ai ∈ Mn(R)), the homomorphism ϕA defined by

xi ,Ai

takes a to a positive-semidefinite matrix:

a,
∑
g
agϕA(g) å 0.

ñ If there are non-trivial relations between xis (or the ∗-involution onA
is not trivial) we need the matrices A1, . . . ,An to be compatible: this
leads to ∗-algebra representations.

ñ This corresponds directly to evaluation of polynomials: the only
representations of polynomial rings are

ϕt(p) = p(t) for t in Rd.



NC positivity

Example (Free polynomial algebra)
For a ∗-invariant element a =

∑
g agg ∈ R〈x1, . . . , xd〉 we write a á 0 if for

all n ∈ N and for every choice of matrices A = (A1, . . . ,Ad) (each
Ai ∈ Mn(R)), the homomorphism ϕA defined by

xi ,Ai

takes a to a positive-semidefinite matrix:

a,
∑
g
agϕA(g) å 0.

ñ If there are non-trivial relations between xis (or the ∗-involution onA
is not trivial) we need the matrices A1, . . . ,An to be compatible: this
leads to ∗-algebra representations.

ñ This corresponds directly to evaluation of polynomials: the only
representations of polynomial rings are

ϕt(p) = p(t) for t in Rd.



NC positivity

Example (Free polynomial algebra)
For a ∗-invariant element a =

∑
g agg ∈ R〈x1, . . . , xd〉 we write a á 0 if for

all n ∈ N and for every choice of matrices A = (A1, . . . ,Ad) (each
Ai ∈ Mn(R)), the homomorphism ϕA defined by

xi ,Ai

takes a to a positive-semidefinite matrix:

a,
∑
g
agϕA(g) å 0.

ñ If there are non-trivial relations between xis (or the ∗-involution onA
is not trivial) we need the matrices A1, . . . ,An to be compatible: this
leads to ∗-algebra representations.

ñ This corresponds directly to evaluation of polynomials: the only
representations of polynomial rings are

ϕt(p) = p(t) for t in Rd.



NC-Positivstellensatz

Theorem (Abstract Positivstellensatz: K. Schmüdgen, ...)
For a ∗-invariant element a ∈A the following conditions are equivalent.

1. a á 0 (with respect to all ∗-representations ofA),
2. a+ εu ∈ Σ2A for all ε > 0, where u is an interior point of Σ2A.
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Recall that for a group G:

ñ ñ property (T) is hard analytic;
ñ ñ but (T) reduces to the positivity of ∆2 − λ∆ in R[G]
ñ ñ NC-Positivstellensätz gives sums of squares approach

(as long as we know some interior points u)
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NC-Positivstellensatz for R[G]

ñ ξ á 0 ⇐⇒ π(ξ) å 0 in every ∗-representation of R[G]
ñ Σ2R[G] = {∑i ξ∗i ξi : ξ ∈ R[G]

}
Theorem (Positivstellensatz)
Assume that u is an interior point of Σ2R[G]. For any ∗-invariant ξ ∈ R[G]

ξ á 0 ⇐⇒ ξ + εu ∈ Σ2R[G] for all ε > 0.

Example
1e is an interior point of Σ2R[G], i.e.

Is ∆2 − λ∆+ εe ∈ Σ2R[G] for all ε (and some λ > 0)?

This of no use for us: SOS decompositions ∆2 − λ∆+ εe =∑ξ∗i ξi may be
very di�rent for di�erent ε.
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NC-Positivstellensatz for I[G]

ñ Let I[G] =
{∑

g agg :
∑

g ag = 0
}

be the augmentation ideal.

Lemma (Ozawa, 2016)∆ is an interior point of Σ2I[G] = I[G]∩ Σ2R[G], i.e. for any ξ = ξ∗ ∈ I[G],

ξ á 0 ⇐⇒ ξ + ε∆ ∈ Σ2I[G] for all ε > 0.

Example
If we can show that ∆2 − λ∆+ ε0∆ =∑ξ∗i ξi for a single fixed ε0, then

∆2 − (λ− ε0)∆+ ε∆ =∑ξ∗i ξi + ε
∑
s∈S
(1− s)∗(1− s) ∈ Σ2I[G]

for all ε simultanuously!
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Property (T) by semi-definite optimization

1. Pick G = 〈S|R〉;

2. Set E = (e,g1,g2, . . . ,gn), gi ∈ Bd(e,S) (d = 2, 3, . . .);
3. Solve the problem (numerically):

maximize: λ

subject to: P å 0, P ∈ME

(∆2 − λ∆)t = (E∗PET)t = 〈Mt,P〉, for all t ∈ E∗E

4. Compute
√
P = Q = [ -----→qe, . . . , -----------------------------→qgn] (columns of matrix Q)

5. Finally: ξg = 〈E,
---------------------------------→
qg〉 ∈ R[G] such that supp(ξg) ⊂ E satisfy

∆2 − λ∆ = ∑
g∈E
ξg
∗ξg.

(Modulo certification of the result.)
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A few numbers

G n m λ ‖r‖1 <

SL(3,Z) 390,287 935,021 0.5405 5.2 · 10−7

SL(4,Z) 93,962 263,122 1.3150 5.2 · 10−8

SL(5,Z) 628,882 1,757,466 2.6500 2.0 · 10−4

SAut(F4) 3,157,730 1,777,542 0.0100 7.4

(after weeks of computation)
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(There must be a better way!)
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Problem with scaling

For n-variate polynomial of degree 2d:

N =
(
n+ d
n

)
, m =

(
n+ 2d
n

)
.

▶ interior point solvers (O(mN3.5 +m2N2.5))
CSDP, DSDP, Hypatia, MOSEK, SDPA, ...

▶ Alternating Direction Method of Multipliers
CDCS, COSMO, SCS, ...

▶ Low rank approximation of P, (Scaled) dominantly diagonal matrices,
Newton conjugate gradient, Primal-dual hybrid gradient...

Block-diagonalization
Represent P as block diagonal direct sum of psd matrices:

1. Chordal decomposition (exploit sparsity pattern in Ais)

2. Wedderburn(-Artin) decomposition for matrix algebras
(group symmetry, general *-algebras, Jordan algebras, ...)
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Group symmetry



Invariant problems

Optimization problem

maximise: ⟨cT ,P⟩
subject to: P å 0

⟨Ai,P⟩ á bi, i = 1, . . . ,m.

▶ G is a finite group
▶ G acts linearly, orthogonaly on Rn (space of variables)
▶ G acts linearly, orthogonaly on Rm (space of constraints)



Group symmetry invariance: Example

Robinson form

R(x, y) = x6 + y6 − x4y2 − y4x2 − x4 − y4 + 3x2y2 − x2 − y2 + 1.

R is invariant under the following operations on monomials

α1 : (x, y), (y, x)
α2 : (x, y), (−y, x)

{α1, α2} generate a set of 8 symmetries – the dihedral group D4 .

▶ the symmetry of monomials leads to the symmetry of constraints,
▶ the symmetry of monomials leads to the symmetry of the psd matrix P.
▶ In this case: invariant problem = defining polynomial is invariant!
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Misleading quote of the day

The structure of simplifications that can be derived from
group symmetry does not depend on the optimization
problem.



When a finite G acts linearly on Rn

▶ a G-invariant subspace V is irreducible if its only G-invariant subspaces
are {0} and V,

▶ the set of the types of irreducible subspaces is finite,
▶ An action-preserving map between subspaces of different types is 0.

Lemma (Schur)
Suppose that M,P be two linear G-maps, M = m1 ⊕m2 for two irreducible
projections mi and such that MPM−1 = P. Then

▶ if m1 and m2 are of different types then P =
[
c1Id1 0
0 c2Id2

]
;

▶ if m1 m2 are of the same type, then P =
[
c11Id c12Id
c21Id c22Id

]
≊
[
c11 c12
c21 c22

]
⊗ Id;

Miracle: When M = Mg are given by a linear G-action they can be
simultaneously diagonalized to isotypical blocks!
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Block decomposition from symmetries

P is invariant under group symmetries ⇐⇒ MgPM−1g = P for every g ∈ G =⇒
P admits a block-diagonal structure.

SN1⊕SN2⊕SN3⊕...

These projections live in the group *-algebra in a basis-free form!
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Example: SymbolicWedderburn.jl

using PermutationGroups, DynamicPolynomials
using SymbolicWedderburn
G = PermGroup([perm"(1,2)", perm"(1,2,3,4)"]) # Sym(4)
@polyvar x[1:4]; basis = monomials(x, 0:2) # 15 monomials
symmetry_adapted_basis(Rational{Int}, G, VariablePermutation(), basis,

semisimple=true)

Isotypical/semisimple blocks when acting on basis:

B1 =


1

x1 + x2 + x3 + x4
x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

x21 + x22 + x23 + x24

 B2 =



x1 − x4
x2 − x4
x3 − x4
x22 − x24
x23 − x24
x21 − x24

x1x2 − x3x4
x1x3 − x2x4
x1x4 − x2x3


B3 =

[
x1x2 − x1x4 − x2x3 + x3x4
x1x3 − x1x4 − x2x3 + x2x4

]

We went from 15× 15-psd constrain to sizes (4× 4, 9× 9, 2× 2).



Group algebra and projections

Definition
Group algebra R[G]

▶ elements of R[G] are (finitely supported) functions a : G→ R, usually
written as a =

∑
g agg

▶ multiplication is convolution: if a =
∑

g agg and b =
∑

g bgg then

ab =
∑
g

∑
h
agh−1bhg

e.g. (1e− 2g)(g+ 3g−1h2) = 1g− 2g2 + 3g−1h2 − 6h2.

Fact:
Projections onto isotypical subspaces live in R[G] in a matrix-free form.

B3 =
[
x1x2 − x1x4 − x2x3 + x3x4
x1x3 − x1x4 − x2x3 + x2x4

]
←→ p3 =

1
12

(
2()− (2, 4, 3)− (2, 3, 4)+ 2(1, 2)(3, 4)−
(1, 3, 2)− (1, 4, 2)− (1, 4, 3)+ (1, 3)(2, 4)−
(1, 2, 3)+ 2(1, 4)(2, 3)− (1, 2, 4)− (1, 3, 4)

)
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SN1⊕SN2⊕SN3⊕...

(Mm1⊗Sd1)⊕(Mm2⊗Sd2)⊕
(Mm3⊗Sd3)⊕...

d1×d1

d2×d2

d3×d3

by Schur

Sm1 ⊕ Sm2 ⊕ Sm3 ⊕ . . .

B′3 =
1
2

(
x1x2−x1x4−x2x3+x3x4+

x1x3−x1x4−x2x3+x2x4

)
←→ q3 · p3 where q3 =

1
2 (()+ (3, 4))

Open problem
Given an isotypical projection p ∈ R[G] how to find a projection q ∈ R[G]
so that p(q) = 1?
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Example: SymbolicWedderburn.jl

# [ ... ]
symmetry_adapted_basis(Rational{Int}, G, VariablePermutation(), basis

[, semisimple=false])

Simple blocks when acting on basis:

B′1 =


1

x1 + x2 + x3 + x4
x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

x21 + x
2
2 + x

2
3 + x

2
4

 B′2 =


1
3 (3x1 − x2 − x3 − x4)1
3 (3x

2
1 − x

2
2 − x

2
3 − x

2
4)

x1x2 + x1x3 + x1x4 − x2x3 − x2x4 − x3x4



B′3 =
[ 1
2 (2x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + 2x3x4)

]

Reduction: 15× 15→ (4× 4, 9× 9, 2× 2)→ (4× 4, 3× 3, 1× 1)-psd constraints.



Large scale example

Optimization problem from geometric group theory1:

Estimate the spectral gap of the group Laplacian for Aut(F5)
If ∆2 − λ∆ á 0 then (0, λ) is not in the spectrum.

▶ relax ∆2 − λ∆ á 0 as sum of squares problem:
▶ psd-constraint of size 4 641× 4 641, 1.1 · 107 constraints
▶ symmetry group: S2 ≀ S5 (3840 elements)
▶ After symmetrization:

▶ 29-blocks (largest: 58× 58) (13 232 variables in total)
▶ 7 230 constraints

▶ Solvable in 20 minutes to ε ∼ 10−12!

1Kaluba, M., Nowak, P.W. & Ozawa, N. Aut(F5) has property (T). Math. Ann. 375, 1169–1191 (2019).
https://doi.org/10.1007/s00208-019-01874-9

https://doi.org/10.1007/s00208-019-01874-9
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Original psd constraint (4 641× 4 641)

diagonalized psd (⊂ 448× 448)



The main result



Theorem (Kaluba-Kielak-Nowak, 2018)

Let Gn = SLn(Z) (or Gn = Aut(Fn)). There exists λn > 0 such that

∆2
n − λn∆n ∈ Σ2I[Gn],

i.e. G has property (T) for for all n á 3 (n á 6, respectively), with√
2λ
|S| à κ(G,S).

Proof.

ñ Find a single SOS decomposition for ∆2
k − λk∆k ∈ R[Gk] for some small

k.
ñ “Cover” ∆2

n − λn∆n via conjugates of ∆2
k − λk∆k under the action of the

Weyl group
ñ Hope that the remainder is a sum of squares.
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