Small hyperbolic groups with property (T)

Marek Kaluba joint work with P.E. Caprace, M. Conder and S. Witzel Poznań, January 2021

Technische Universität, Berlin, Germany & Adam Mickiewicz University, Poznań, Poland

Outline

Definitions Generalized triangle groups An example *ñ* A bit about proof

DEFINITIONS

Definition (Cayley graph)

Let $G = \langle S | R \rangle$ be a (finitely presented) group. Cayley graph Cay(G *, S*) is a graph *(V, E)*, where

> $V = G$ and $(g, h) ∈ E \iff g^{-1}h ∈ S$.

Definition (Cayley graph)

Let $G = \langle S | R \rangle$ be a (finitely presented) group. Cayley graph Cay(*G*, *S*) is a graph *(V, E)*, where

> $V = G$ and $(g, h) ∈ E \iff g^{-1}h ∈ S$.

▶ Global assumptions: groups are finitely presented, generated by a symmetric set which doesn't contain the identity.

Definition (Hyperbolic group)

- \blacktriangleright A group (*G*, *S*) is (word) hyperbolic when there exists $\delta > 0$ such that Cay (G, S) is a δ -hyperbolic metric space.
- \triangleright A graph is *δ*-hyperbolic if for every geodesic triangle *δ*-neighbourhood of two edges contains also the third one.

Definition (Hyperbolic group)

- \blacktriangleright A group (*G*, *S*) is (word) hyperbolic when there exists $\delta > 0$ such that Cay(G , S) is a δ -hyperbolic metric space.
- \triangleright A graph is *δ*-hyperbolic if for every geodesic triangle *δ*-neighbourhood of two edges contains also the third one.
- \blacktriangleright Strongly simple (there exists $H \triangleleft G$ such that neither *H* nor G/H is finite)
- ▶ have exponential growth,
- \blacktriangleright enjoy solvable word problem,
- ▶ have lots of other structure
- **►** most groups are hyperbolic (in the appropriate random model)

Definition (Hyperbolic group)

- \blacktriangleright A group (*G*, *S*) is (word) hyperbolic when there exists $\delta > 0$ such that Cay(G , S) is a δ -hyperbolic metric space.
- \triangleright A graph is *δ*-hyperbolic if for every geodesic triangle *δ*-neighbourhood of two edges contains also the third one.
- \blacktriangleright Strongly simple (there exists $H \triangleleft G$ such that neither *H* nor G/H is finite)
- ▶ have exponential growth,
- \blacktriangleright enjoy solvable word problem,
- ▶ have lots of other structure
- **►** most groups are hyperbolic (in the appropriate random model)

Are hyperbolic groups *residually finite*?

- ▶ Property (T) is an analytic property defined in terms of unitary actions;
- \blacktriangleright There is a constant $\kappa(G, S) \ge 0$ (think: universal spectral gap of group Laplacian for any ∗-representation) which is indicator of the property;
- ▶ Property (T) is an analytic property defined in terms of unitary actions;
- \blacktriangleright There is a constant $\kappa(G, S) \ge 0$ (think: universal spectral gap of group Laplacian for any $*$ -representation) which is indicator of the property;
- ▶ implies Serre property FA
- ▶ implies FAb (finite abelianization)
- ► turns Cayley graphs of quotients into expanders
- ► most groups have property (T) (in the appropriate random model)
- ▶ Property (T) is an analytic property defined in terms of unitary actions;
- \blacktriangleright There is a constant $\kappa(G, S) \ge 0$ (think: universal spectral gap of group Laplacian for any $*$ -representation) which is indicator of the property;
- ▶ implies Serre property FA
- ▶ implies FAb (finite abelianization)
- ► turns Cayley graphs of quotients into expanders
- ► most groups have property (T) (in the appropriate random model)

How can we find a hyperbolic group which has property (T)?

[Generalized triangle groups](#page-11-0)

Definition (Triangle group)

Triangle group is a group geometrically realized by reflections on the sides of a triangle.

Definition (Triangle group)

Triangle group is a group geometrically realized by reflections on the sides of a triangle.

$$
\langle a, b, c | 1 = a^2 = b^2 = c^2 = (ab)^l = (bc)^n = (ca)^m \rangle
$$

Note: A triangle group is hyperbolic if and only if $\frac{1}{l} + \frac{1}{m} + \frac{1}{n} < 1$.

Definition (Triangle group)

Triangle group is a group geometrically realized by reflections on the sides of a triangle.

$$
\langle a, b, c | 1 = a^2 = b^2 = c^2 = (ab)^l = (bc)^n = (ca)^m \rangle
$$

Note: A triangle group is hyperbolic if and only if $\frac{1}{l} + \frac{1}{m} + \frac{1}{n} < 1$.

Definition (*k*-fold triangle group)

$$
G(l, m, n) = \langle a, b, c | 1 = a^k = b^k = c^k = (ab)^l = (bc)^n = (ca)^m \rangle
$$

Generalized Triangle groups

$$
G(l, m, n) = \langle a, b, c | 1 = a^k = b^k = c^k = (ab)^l = (bc)^n = (ca)^m \rangle
$$

$$
G(l, m, n) = \langle a, b, c | 1 = a^k = b^k = c^k = (ab)^l = (bc)^n = (ca)^m \rangle
$$

Definition

Take $G = C_k * C_k * C_k = \langle a, b, c \vert 1 = a^k = b^k = c^k \rangle$ and specify three groups:

- ▶ $L_{a,b}$ \triangleleft $\langle a,b \rangle$ *< <i>G*,
- \blacktriangleright $L_{b,c} \triangleleft \langle b, c \rangle \langle G,$
- \blacktriangleright *L*_{*a,c*} \triangleleft $\langle a, c \rangle \langle$ *G*.

$$
G(l, m, n) = \langle a, b, c | 1 = a^k = b^k = c^k = (ab)^l = (bc)^n = (ca)^m \rangle
$$

Definition

Take $G = C_k * C_k * C_k = \langle a, b, c \vert 1 = a^k = b^k = c^k \rangle$ and specify three groups:

- ▶ $L_{a,b}$ \triangleleft $\langle a,b \rangle$ *< <i>G*,
- ▶ $L_{b,c}$ \triangleleft $\langle b, c \rangle$ \langle *<i>G*,
- \blacktriangleright *L*_{*a,c*} \triangleleft $\langle a, c \rangle \langle$ *G*.

Then

$$
G(L_{a,b}, L_{b,c}, L_{a,c}) = G/\langle L_{a,b}, L_{b,c}, L_{a,c}\rangle
$$

is generalized *k*-fold triangle group.

[An example](#page-18-0)

There exist generalized 18*-fold triangle groups which are hyperbolic and have property (T).*

Question: *What is the lowest k* ≥ 3 *such that such examples exist?*

There exist generalized 18*-fold triangle groups which are hyperbolic and have property (T).*

Question: *What is the lowest k* ≥ 3 *such that such examples exist?*

Theorem (Caprace-Conder-K.-Witzel, 2020)

 $k \leqslant 5$

There exist generalized 18*-fold triangle groups which are hyperbolic and have property (T).*

Question: What is the lowest k á 3 *such that such examples exist?*

Theorem (Caprace-Conder-K.-Witzel, 2020)

 $k \leqslant 5$

 $I.e.$ for $G = C_5 * C_5 * C_5 = \langle a, b, c | 1 = a^5 = b^5 = c^5 \rangle$ and

► $L_{a,b} = \langle [a,b] \rangle$, i.e. $\langle a,b \rangle / L_{a,b} \cong C_5 \oplus C_5$,

There exist generalized 18*-fold triangle groups which are hyperbolic and have property (T).*

Question: What is the lowest k á 3 *such that such examples exist?*

Theorem (Caprace-Conder-K.-Witzel, 2020)

 $k \leqslant 5$

 $I.e.$ for $G = C_5 * C_5 * C_5 = \langle a, b, c | 1 = a^5 = b^5 = c^5 \rangle$ and

$$
\blacktriangleright
$$
 $L_{a,b} = \langle [a,b] \rangle$, i.e. $\langle a,b \rangle / L_{a,b} \cong C_5 \oplus C_5$,

 \blacktriangleright $L_{a,c} = \langle [a, c, a], [a, c, c] \rangle$, i.e. $\langle a, c \rangle / L_{a,c} \cong H_3(\mathbb{F}_5)$,

There exist generalized 18*-fold triangle groups which are hyperbolic and have property (T).*

Question: *What is the lowest k* ≥ 3 *such that such examples exist?*

Theorem (Caprace-Conder-K.-Witzel, 2020)

 $k \leqslant 5$

 $I.e.$ for $G = C_5 * C_5 * C_5 = \langle a, b, c | 1 = a^5 = b^5 = c^5 \rangle$ and

$$
\blacktriangleright
$$
 $L_{a,b} = \langle [a,b] \rangle$, i.e. $\langle a,b \rangle / L_{a,b} \cong C_5 \oplus C_5$,

$$
\blacktriangleright \ L_{a,c} = \langle [a,c,a], [a,c,c] \rangle, \text{ i.e. } \langle a,c \rangle / L_{a,c} \cong H_3(\mathbb{F}_5),
$$

$$
\blacktriangleright
$$
 $L_{b,c} = \ldots$, i.e. $\langle b, c \rangle / L_{b,c} \cong PSL_2(\mathbb{F}_{109})$,

There exist generalized 18*-fold triangle groups which are hyperbolic and have property (T).*

Question: *What is the lowest k* ≥ 3 *such that such examples exist?*

Theorem (Caprace-Conder-K.-Witzel, 2020)

 $k \leqslant 5$

 $I.e.$ for $G = C_5 * C_5 * C_5 = \langle a, b, c | 1 = a^5 = b^5 = c^5 \rangle$ and

$$
\blacktriangleright
$$
 $L_{a,b} = \langle [a,b] \rangle$, i.e. $\langle a,b \rangle / L_{a,b} \cong C_5 \oplus C_5$,

$$
\blacktriangleright \ L_{a,c} = \langle [a,c,a], [a,c,c] \rangle, \text{ i.e. } \langle a,c \rangle / L_{a,c} \cong H_3(\mathbb{F}_5),
$$

$$
\blacktriangleright
$$
 $L_{b,c} = \ldots$, i.e. $\langle b, c \rangle / L_{b,c} \cong PSL_2(\mathbb{F}_{109})$,

There exist generalized 18*-fold triangle groups which are hyperbolic and have property (T).*

Question: What is the lowest k á 3 *such that such examples exist?*

Theorem (Caprace-Conder-K.-Witzel, 2020)

 $k \leqslant 5$

 $I.e.$ for $G = C_5 * C_5 * C_5 = \langle a, b, c | 1 = a^5 = b^5 = c^5 \rangle$ and

$$
\blacktriangleright
$$
 $L_{a,b} = \langle [a,b] \rangle$, i.e. $\langle a,b \rangle / L_{a,b} \cong C_5 \oplus C_5$,

$$
\blacktriangleright \ L_{a,c} = \langle [a,c,a], [a,c,c] \rangle, \text{ i.e. } \langle a,c \rangle / L_{a,c} \cong H_3(\mathbb{F}_5),
$$

$$
\blacktriangleright
$$
 $L_{b,c} = \ldots$, i.e. $\langle b, c \rangle / L_{b,c} \cong PSL_2(\mathbb{F}_{109})$,

 $G(L_{a,b}, L_{b,c}, L_{a,c})$ is hyperbolic and has property (T).

A bit about proof: hyperbolicity

- ▶ The group comes as a group of a poset of groups over a triangle (trivial facet group, cyclic groups on edges, finite groups on edges).
- ▶ To every poset of groups there exists a canonical construction of a space (a simplicial complex) the poset group acts property on (Haefliger-Brideson).

 \blacktriangleright Let

$$
\Gamma_{a,b} = \Gamma_{\langle a,b\rangle/L_{a,b}}(\{a,\ldots a^4,b,\ldots b^4\})
$$

denote the (bipartite) coset graph. The geometry of the space is determined by links of its vertices, which are precisely graphs $\Gamma_{a,b}, \Gamma_{a,c}, \Gamma_{b,c}$

• their girths are $\gamma_{a,b} = 4$, $\gamma_{a,c} = 6$ and $\gamma_{b,c} = 14$, and

$$
\frac{2}{\gamma_{a,b}} + \frac{2}{\gamma_{a,c}} + \frac{2}{\gamma_{b,c}} = \frac{41}{42} < 1.
$$

Let $G = \langle A_a, A_b, A_c \rangle$ *be generated by three (finite) subgroups such that* $X_{i,j} = \langle A_i, A_j \rangle$ is finite for each i, j . If

$$
\varepsilon_{X_{a,b}}^2+\varepsilon_{X_{a,c}}^2+\varepsilon_{X_{b,c}}^2+2\varepsilon_{X_{a,b}}\varepsilon_{X_{a,c}}\varepsilon_{X_{b,c}}<1
$$

then G has property (T).

Let $G = \langle A_a, A_b, A_c \rangle$ *be generated by three (finite) subgroups such that* $X_{i,j} = \langle A_i, A_j \rangle$ is finite for each i, j . If

$$
\varepsilon_{X_{a,b}}^2 + \varepsilon_{X_{a,c}}^2 + \varepsilon_{X_{b,c}}^2 + 2\varepsilon_{X_{a,b}}\varepsilon_{X_{a,c}}\varepsilon_{X_{b,c}} < 1
$$

then G has property (T).

Theorem (Dymara-Januszkiewicz, 2002; Oppenheim, 2017)

Constant ε^Xi,^j (so called angle between subgroups Aⁱ , Aj) is equal the spectral gap of the (combinatorial) Laplacian on the link graph ^Γ*ⁱ,^j .*

Let $G = \langle A_a, A_b, A_c \rangle$ *be generated by three (finite) subgroups such that* $X_{i,j} = \langle A_i, A_j \rangle$ is finite for each i, j . If

$$
\varepsilon_{X_{a,b}}^2 + \varepsilon_{X_{a,c}}^2 + \varepsilon_{X_{b,c}}^2 + 2\varepsilon_{X_{a,b}}\varepsilon_{X_{a,c}}\varepsilon_{X_{b,c}} < 1
$$

then G has property (T).

Theorem (Dymara-Januszkiewicz, 2002; Oppenheim, 2017)

Constant ε^Xi,^j (so called angle between subgroups Aⁱ , Aj) is equal the spectral gap of the (combinatorial) Laplacian on the link graph ^Γ*ⁱ,^j .*

$$
\blacktriangleright \ \varepsilon_{\mathcal{C}_5\oplus \mathcal{C}_5} = 0
$$

Let $G = \langle A_a, A_b, A_c \rangle$ *be generated by three (finite) subgroups such that* $X_{i,j} = \langle A_i, A_j \rangle$ is finite for each i, j . If

$$
\varepsilon_{X_{a,b}}^2 + \varepsilon_{X_{a,c}}^2 + \varepsilon_{X_{b,c}}^2 + 2\varepsilon_{X_{a,b}}\varepsilon_{X_{a,c}}\varepsilon_{X_{b,c}} < 1
$$

then G has property (T).

Theorem (Dymara-Januszkiewicz, 2002; Oppenheim, 2017)

Constant ε^Xi,^j (so called angle between subgroups Aⁱ , Aj) is equal the spectral gap of the (combinatorial) Laplacian on the link graph ^Γ*ⁱ,^j .*

$$
\blacktriangleright \ \varepsilon_{\mathcal{C}_5\oplus \mathcal{C}_5} = 0
$$

$$
\triangleright \varepsilon_{H_3(\mathbb{F}_p)} = \frac{1}{\sqrt{p}} \left(\text{Ershow } \& \text{Jaikin-Zapirain} \right)
$$

- *m* $F_{i,j} = Cay(X_{i,j}, (A_i \cup A_j) \setminus \{1\})$
- \blacktriangleright the problem: $Cay(PSL_2(\mathbb{F}_{109}), S)$ has over 500 000 vertices...

- *m* $F_{i,j} = Cay(X_{i,j}, (A_i \cup A_j) \setminus \{1\})$
- \blacktriangleright the problem: $Cay(PSL₂(F₁₀₉), S)$ has over 500 000 vertices...
- \triangleright Combinatorial Laplacian of *Cay*(*G*, *S*) = group Laplacian Δ (*G*, *S*) = |*S*| − $\sum_{s \in S}$ *s* ∈ ℝ[*G*] in regular representation
- \blacktriangleright *PSL*₂(\mathbb{F}_{109}) is a finite group, so has a finite number of irreducible representations (each of degree \leq 110).
- ▶ decompose regular representation into irreducible summands and compute the bottom of the spectrum of $\Delta(G, S)$ in each summand

- *m* $F_{i,j} = Cay(X_{i,j}, (A_i \cup A_j) \setminus \{1\})$
- \blacktriangleright the problem: $Cay(PSL₂(F₁₀₉), S)$ has over 500 000 vertices...
- \triangleright Combinatorial Laplacian of *Cay*(*G*, *S*) = group Laplacian Δ (*G*, *S*) = |*S*| − $\sum_{s \in S}$ *s* ∈ ℝ[*G*] in regular representation
- \blacktriangleright *PSL*₂(\mathbb{F}_{109}) is a finite group, so has a finite number of irreducible representations (each of degree \leq 110).
- ► decompose regular representation into irreducible summands and compute the bottom of the spectrum of $\Delta(G, S)$ in each summand
- ▶ this is done numerically for each of principal and discrete series reps
- \blacktriangleright the largest spectral gap is afforded by the principal representation associated to character $v_5 : \mathbb{F}_{109}^{\times} \to \mathbb{C}$, defined by $v_5(\alpha) = \zeta_{54}^5$ (where α = 6 was chosen as the generator of $\mathbb{F}_{109}^{\times}$). It fits

 $\lambda_1 \in 0.8778251710622475260 \pm 2.79\cdot 10^{-20},$

- *m* $F_{i,j} = Cay(X_{i,j}, (A_i \cup A_j) \setminus \{1\})$
- \blacktriangleright the problem: $Cay(PSL₂(F₁₀₉), S)$ has over 500 000 vertices...
- \triangleright Combinatorial Laplacian of *Cay*(*G*, *S*) = group Laplacian Δ (*G*, *S*) = |*S*| − $\sum_{s \in S}$ *s* ∈ ℝ[*G*] in regular representation
- \blacktriangleright *PSL*₂(\mathbb{F}_{109}) is a finite group, so has a finite number of irreducible representations (each of degree \leq 110).
- ► decompose regular representation into irreducible summands and compute the bottom of the spectrum of $\Delta(G, S)$ in each summand
- ▶ this is done numerically for each of principal and discrete series reps
- \blacktriangleright the largest spectral gap is afforded by the principal representation associated to character $v_5 : \mathbb{F}_{109}^{\times} \to \mathbb{C}$, defined by $v_5(\alpha) = \zeta_{54}^5$ (where α = 6 was chosen as the generator of $\mathbb{F}_{109}^{\times}$). It fits

$$
\lambda_1 \in 0.8778251710622475260 \pm 2.79 \cdot 10^{-20},
$$

which results in

$$
\epsilon_{X_{a,b}}^2+\epsilon_{X_{a,c}}^2+\epsilon_{X_{b,c}}^2+2\epsilon_{X_{a,b}}\epsilon_{X_{a,c}}\epsilon_{X_{b,c}}\in 0.7797513428770696359\pm 4.45\cdot 10^{-20}<1
$$

Dziękuję!