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Definitions



Cayley Graphs

Definition (Cayley graph)

Let G = 〈S|R〉 be a (finitely presented) group. Cayley graph Cay(G,S) is a
graph (V, E), where

V = G and
(g,h) ∈ E ⇐⇒ g−1h ∈ S.

ñ Global assumptions: groups are finitely presented, generated by a
symmetric set which doesn’t contain the identity.
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Hyperbolic groups

Definition (Hyperbolic group)

ñ A group (G,S) is (word) hyperbolic when there exists δ > 0 such that
Cay(G,S) is a δ-hyperbolic metric space.

ñ A graph is δ-hyperbolic if for every geodesic triangle δ-neighbourhood
of two edges contains also the third one.

ñ Strongly simple (there exists H / G such that neither H nor G/H is finite)
ñ have exponential growth,
ñ enjoy solvable word problem,
ñ have lots of other structure
ñ most groups are hyperbolic (in the appropriate random model)

Are hyperbolic groups residually finite?
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Property (T) – meaningless gist

ñ Property (T) is an analytic property defined in terms of unitary actions;
ñ There is a constant κ(G,S) á 0 (think: universal spectral gap of group

Laplacian for any ∗-representation) which is indicator of the property;

ñ implies Serre property FA
ñ implies FAb (finite abelianization)
ñ turns Cayley graphs of quotients into expanders
ñ most groups have property (T) (in the appropriate random model)

How can we find a hyperbolic group which has property (T)?
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Generalized triangle groups



Triangle groups

Definition (Triangle group)
Triangle group is a group geometrically realized by reflections on the sides
of a triangle.

〈a,b, c|1 = a2 = b2 = c2 = (ab)l = (bc)n = (ca)m〉

Note: A triangle group is hyperbolic if and only if 1
l +

1
m +

1
n < 1.

Definition (k-fold triangle group)

G(l,m,n) = 〈a,b, c|1 = ak = bk = ck = (ab)l = (bc)n = (ca)m〉
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Generalized Triangle groups

G(l,m,n) = 〈a,b, c|1 = ak = bk = ck = (ab)l = (bc)n = (ca)m〉

Definition

Take G = Ck ∗ Ck ∗ Ck = 〈a,b, c|1 = ak = bk = ck〉 and specify three groups:

ñ La,b / 〈a,b〉 < G,
ñ Lb,c / 〈b, c〉 < G,
ñ La,c / 〈a, c〉 < G.

Then
G(La,b, Lb,c, La,c) = G/〈La,b, Lb,c, La,c〉

is generalized k-fold triangle group.
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An example



Theorem (Lubotzky-Manning-Wilton, 2019)
There exist generalized 18-fold triangle groups which are hyperbolic and
have property (T).

Question: What is the lowest k á 3 such that such examples exist?

Theorem (Caprace-Conder-K.-Witzel, 2020)
k à 5.

I.e. for G = C5 ∗ C5 ∗ C5 = 〈a,b, c|1 = a5 = b5 = c5〉 and

ñ La,b = 〈[a,b]〉, i.e. 〈a,b〉/La,b � C5 ⊕ C5,
ñ La,c = 〈[a, c,a], [a, c, c]〉, i.e. 〈a, c〉/La,c � H3(F5),
ñ Lb,c = . . ., i.e. 〈b, c〉/Lb,c � PSL2(F109),

G(La,b, Lb,c, La,c) is hyperbolic and has property (T).
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A bit about proof: hyperbolicity

ñ The group comes as a group of a poset of groups over a triangle (trivial
facet group, cyclic groups on edges, finite groups on edges).

ñ To every poset of groups there exists a canonical construction of a
space (a simplicial complex) the poset group acts property on
(Haefliger-Brideson).

ñ Let Γa,b = Γ〈a,b〉/La,b({a, . . .a4,b, . . .b4})
denote the (bipartite) coset graph. The geometry of the space is
determined by links of its vertices, which are precisely graphsΓa,b, Γa,c, Γb,c.

ñ their girths are γa,b = 4, γa,c = 6 and γb,c = 14, and

2
γa,b

+ 2
γa,c

+ 2
γb,c

= 41
42 < 1.



A bit about proof: Property (T)

Corollary (to a theorem of Ershov & Jaikin-Zapirain, 2010)

Let G = 〈Aa,Ab,Ac〉 be generated by three (finite) subgroups such that
Xi,j = 〈Ai,Aj〉 is finite for each i, j. If

ε2Xa,b + ε
2
Xa,c + ε

2
Xb,c + 2εXa,bεXa,cεXb,c < 1

then G has property (T).

Theorem (Dymara-Januszkiewicz, 2002; Oppenheim, 2017)

Constant εXi,j (so called angle between subgroups Ai, Aj) is equal the
spectral gap of the (combinatorial) Laplacian on the link graph Γi,j.

ñ εC5⊕C5 = 0
ñ εH3(Fp) = 1√p (Ershov & Jaikin-Zapirain)
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A bit about proof: Property (T)

ñ Γi,j = Cay(Xi,j, (Ai ∪ Aj) \ {1})
ñ the problem: Cay(PSL2(F109),S) has over 500000 vertices...

ñ Combinatorial Laplacian of Cay(G,S) = group Laplacian∆(G,S) = |S| −∑s∈S s ∈ R[G] in regular representation
ñ PSL2(F109) is a finite group, so has a finite number of irreducible

representations (each of degree à 110).
ñ decompose regular representation into irreducible summands and

compute the bottom of the spectrum of ∆(G,S) in each summand
ñ this is done numerically for each of principal and discrete series reps
ñ the largest spectral gap is a�orded by the principal representation

associated to character ν5 : F×109 → C, defined by ν5(α) = ζ554 (where
α = 6 was chosen as the generator of F×109). It fits

λ1 ∈ 0.8778251710622475260± 2.79 · 10−20,

which results in

ε2Xa,b+ε
2
Xa,c+ε

2
Xb,c+2εXa,bεXa,cεXb,c ∈ 0.7797513428770696359±4.45·10

−20 < 1
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Dziękuję!
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