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For a given finite point set T in RY we investigate methods to describe the convex hull conv(T) in
geometricaly approximate sense. As an additional constraint we wish to bound the combinatorial
complexity of the convex approximation, e.g., given in terms of the total number of faces. This problem
IS motivated by investigation of latent spaces of autoencoder neural networks.

The convex hull problem:

Given a set X of finitely many points in some Euclidean space R9 we wish to list:

1. linear inequalities (hyperplanes) for the finitely many facets of the convex polytope which is the
convex hull of the input,

2. the set of vertices V C X of the polytope.

We are interested in the situation where the dimension d is large. From known theoretical results it is
clear, however, that this can only work in some approximate sense: even a small number of points
may lead to exponentially many facets.

Theorem (Buchta-Mduller-Tichy)

The expected number of facets of the polytope defined by a set of n points in RY js
(2e)910(nlog? 1 n).

The precise complexity of the convex hull problem (measured by the sizes of both input and output,
combined) is unknown.

Approximate convex hulls

We use the stochastic approach of [2] of random polytope. There, a random model of polytopes is
defined as follows: we say that

P~ P(d,n) < P = conv(X)
where X is chosen uniformly over S4—1 ¢ R,

Definition (Dual bounding body)

Let X ¢ R9 be a set of n points, ans Y ¢ S9-1, a set of m unit vectors. The dual bounding body is
the polytope defined by the set of subspaces

Dy(x) = {v e R vy <maxty) b
L] yieY

Intuitively, dual bounding body can be understood as the result of following procedure.

Dual Bounding Body procedure

1. Start with the set X € R®

2. For each direction y; € Y slide (from infinity) a hyperplane perpendicular to y; until it hits a point x;.
Let k = <Xi= yJ>

3. Add hyperplane (v, y;) < k to the description of Dy(X).

It turns out that the dual bounding body Dy(X) is provably geometrically close to the convex hull
conv(X), and it is a much better approximation from the practical point of view:

+ deciding whether p € R" is contained in Dy(X) is straightforward;

+ there is no need to compute all of its vertces as we can work with a fraction of them at a time.

Figure 1. Random polytope data descriptor (in green, inside) defined by 50 randomly chosen directions in R3. Observe
that the despite the presence of outliers, the classifier closely approximates the convex hull of the normal class (the
cluster of blue points), as compared to the convex hull (in red).

Random Polytope Descriptors

Definition (Random Polytope Descriptor)

Random Polytope Descriptor RPD,, ,(X) defined by a dataset X C RY is the dual bounding body

RPDm(X) = {v € B (v gy < tmaxijly)}
J

where Y ~ P(d, m) is a set of m directions, chosen, uniformly at random from S9-1.

In the presence of outliers in the data the parameter ¢ parametrizes the robustness of RPD, while m
controls the computational complexity and its approximation characteristics.
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Autoencoders and a measure of geometric (dis)entanglement

In machine learning it is a key challenge to solve the classification problem, i.e. to seek a mechanism
to decide whether or not some input shares a given trait. A common solution is to train a neural
network to discover the best features of the data for the classification purposes. This task can be
viewed as a non-linear, low-dimensional embedding of the data. A particular case of such embeddings
are presented by autoencoder networks. We analyzed vanilla autoencoder (AE) and the variational
autoencoder (VAE) with Gaussian geometric prior:

¢AE: ]RN — Rd,
¢VAE: ]RN — R2d.

Here RY is known as latent space and the the image of the dataset under such map is referred to as
learned representation.

+ Are the representations of classes learned from the dataset entangled?

+ Are the networks susceptible to out-of-distribution attacks?

While the entanglement does not have a universally accepted definition, a shared and very often
implicit expectation is that “in good representations, the factors are related through simple, typically
linear dependencies” [1].

Measuring entanglement We use the RPDs to analyze geometric properties of the learned
representation ¢(X) C RY for different d (i.e. different number of features).

1. Autoencoder network is trained for fixed embedding dimension d on the training part of the dataset.

2. Training data for RPD is prepared as the training data for a given class poisoned by 2% of points
selected at random from all remaining classes;

3. RPD is trained on the prepared data and evaluated on the whole of the test data.

By evaluating the so called scaling distance of a sample to the data descriptor RPD, , we can label
a sample as “normal” (if it comes from the training distribution) or “anomalous” (otherwise). Such
classifier retains 95% accuracy of the original network, as assesed by the AUC score.

RPDs provide a measure of the stability of interpolations in the latent space.
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Figure 2. RPD,» AUC (vertical axis) scores measured on FMNIST dataset per class. The number m of hyperplanes on
horizontal axis. Note: RPDs retain 95% of accuracy of the original network.

Out-of-distribution attacks We can use the computed RPDs to evaluate networks resilence
to out-of-distribution attacks. These attacks test how susceptible the network is to assign with high
confidence learned labels to samples which do not come from the training distribution.

RPDs can be used to quantify out-of-distribution susceptibility.
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Figure 3. Results of the out-of-distribution detection experiment. AE and VAE networks were trained on FMNIST data and
used to embed MNIST test sets. The plot depicts the distribution of minimal scaling distance to one of the ten FMNIST
random polytope descriptors in various dimensions up to 20 for fixed (m, ¢) = (320, 1).
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