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generating set (i.e. S−1 = S).

ñ G = SAut(Fn) or G = SL(n,Z) in this talk.



Notation / Convention

ñ G = 〈S |R〉 is a �nitely presented group generated by a �xed symmetric
generating set (i.e. S−1 = S).

ñ G = SAut(Fn) or G = SL(n,Z) in this talk.



Group Laplacians



Group Laplacian ∆
De�nition

∆(G,S) = ∆(Cay(G,S)) = |S|(Id−MS)

(identity minus random walk operator);

∆ = |S|e−∑
g∈S

g = 1
2
∑
g∈S
(1− g)∗(1− g) ∈ R[G]

ñ the operator ∆ is ∗-invariant,
ñ spectrum of ∆ is real and non-negative;
ñ the second eigenvalue λ1 is called the spectral gap

0 = λ0 à λ1 à · · ·
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Property (T)

ñ For an orthogonal representation π : G→ B(H ) of G on a (real) Hilbert
spaceH denote by

Hπ =
{
v ∈H : π(g)v = v for all g ∈ G

}
the (closed) subspace of π-invariant vectors.

ñ We de�ne

κ(G,S, π) = inf
‖ξ‖=1

{
sup
g∈S
‖π(g)ξ − ξ‖H : ξ ∈ (Hπ)⊥

}
.

De�nition
The Kazhdan’s constant κ(G,S) is de�ned as

κ(G,S) = inf
π
κ(G,S, π)

over all orthogonal representations π of G. We say that G has the
Kazhdan’s property (T) if and only if there exists a (�nite) generating set S
such that κ(G,S) > 0.
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Property (T) and SAut(Fn)

ñ It is known that SL(n,Z) has property (T) i� n á 3;

ñ SAut(Fn) is a noncommutative analogue of SL(n,Z);
ñ SAut(F3) does not have (T)... (McCool 1989);
ñ Does SAut(Fn) have property (T) for n á 4? (Serre 70s, Lubotzky 1994,
Lubotzky-Pak 2001, Fisher 2006, Bridson-Vogtmann 2006, Breuillard 2014,
and many more);

ñ In 2017: SAut(F5) has property (T) via a constructive proof (computer
assisted) (Aut(F5) has property (T) by Kaluba, Nowak and Ozawa)

ñ Today: SAut(Fn) has property (T) for all n á 6.
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Property (T) and SAut(Fn)

Random group elements in �nite groups:

estimating mixing time of the
Product Replacement Algorithm depends on the Kazhdan’s constant of
SAut(Fn), the special authomorphism group of the free group:

Theorem (Lubotzky & Pak, 2000)
Let K be a �nite group generated by k ≤ n elements. If SAut(Fn) has
property (T) with constant κ = κ(SAut(Fn), {transvections}) > 0, then PRA
walk on Γn = Γn(K) has fast mixing rate, i.e.∥∥∥Qt(g) − U∥∥∥tv à ε for t á 16

κ2
log
|Γn|
ε
∼ O

((n
κ

)2
log
|K|
ε

)

(Q(g) is a random walk on the graph Γn starting at generating n-tuple (g)).
Note (Motivation)
We do observe fast mixing rate in practice for large n.
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Property (T) and ∆

ñ Connection to eigenvalues of ∆: κ(G,S) can be estimated as√
2λ1
|S| à κ(G,S).

ñ λ ∈ [0, λ1) ⇐⇒ ∆2 − λ∆ á 0

Corollary
Let G = 〈S| . . .〉 be a �nitely generated group. The following conditions are
equivalent:

ñ there exists λ > 0 such that ∆2 − λ∆ á 0,
ñ G has property (T) with √

2λ
|S| à κ(G,S).
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How to prove that ∆2 − λ∆ á 0 ?



How to prove that a polynomial f á 0 ?



Positivity & SDP



How to prove that a polynomial f á 0 ?

ñ �nd a sum of squares decomposition of f ∈ R[x1, . . . , xn], i.e.

f =
∑
i
f 2,i fi ∈ R[x1, . . . , xn].

Example (Motzkin, 1967s)
x4y2 + x2y4 − 3x2y2 + 1 á 0 but not SOS.

Theorem (Hilbert 17th problem, Artin, 1924)

p á 0 ⇐⇒ ∃q : q2p ∈ Σ2R[x1, . . . xn]
(i.e. p is a sum of squares of rational functions).

Example(
x2 + y2 + 1

)(
x4y2 + x2y4 − 3x2y2 + 1

)
is a sum of squares!
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Problem
How to �nd such sum of squares (SOS) decomposition?

Any polynomial of degree 2 in x and y can be obtained by evaluating

f(x, y) = (1, x, y)


p11 p12 p13
p21 p22 p23
p31 p32 p33



1
x
y


(pij) = P is so called Gramm matrix for f .

Lemma
f has a sum of squares decomposition i� it admits a semi-positive de�nite
Gramm matrix for some (monomial) basis ~x.

Proof.
If P is positive de�nite, then P = QTQ and

f = ~xTP~x = ~xTQT · Q~x = (Q~x)T · (Q~x) .
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f = ~xTP~x = ~xTQT · Q~x = (Q~x)T · (Q~x) .



Problem
How to �nd such sum of squares (SOS) decomposition?
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Mathematical Programming

Linear programming:

ñ optimise linear functional
ñ on the set constrained by hyperplanes (polytope)

Semi-de�nite programming

ñ optimise linear functional
ñ on a polytope intersected with the cone of SPD matrices
(spectrahedron)

ñ weak duality, non-unique solutions
ñ even feasibility is a hard problem!
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SDP problem formulation

optimisation variables: a,b1,b2, c, λ.

Example (SDP problem)

maximise: λ
subject to: λ á 0

c = 1− λ
b1 + b2 = 4
a = 2[
c b2
b1 a

]
å 0

tries to maximise λ as long as (2x2 + 4x+ 1)− λ á 0.
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NC-Positivstellensatz

ñ Σ2R[G] = {∑i ξ∗i ξi : ξ ∈ R[G]
}

ñ ξ á 0 ⇐⇒ π(ξ) å 0 in every ∗-representation of R[G]

Theorem (Schmüdgen)
For any ∗-invariant element ξ ∈ R[G]

ξ á 0 ⇐⇒ ξ + εu ∈ Σ2R[G]
for all ε > 0, where u is an interior point of Σ2R[G].
Proposition (Ozawa, 2015)
Let I[G] denote the augmentation ideal of R[G]. ∆ is an interior point ofΣ2I[G] = I[G]∩ Σ2R[G], i.e. for a ∗-invariant element ξ ∈ I[G]

ξ á 0 ⇐⇒ ξ + ε∆ ∈ Σ2I[G]
for all ε > 0.
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Example
If we can show that ∆2 − λ∆+ ε0∆ =∑ξ∗i ξi for a single �xed ε0, then

∆2 − (λ− ε0)∆+ ε∆ =∑ξ∗i ξi + ε
∑
(1− g)∗(1− g) ∈ Σ2I[G]

for all ε simultanuously!

Corollary (Ozawa, 2015)
The following conditions are equivalent:

ñ G has property (T)
ñ there exists λ > 0, and ξ1, . . . ξn ∈ I[G] such that

∆2 − λ∆ = n∑
i=1
ξ∗i ξi.
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Action Plan

1. Pick G = 〈S|R〉;
2. Set ~x = (e,g1,g2, . . . ,gn), gi ∈ Bd(e,S) (d = 2, 3, . . .);
3. Solve the problem (numerically):

maximize: λ
subject to: P å 0, P ∈M~x

λ á 0

(∆2 − λ∆)t = ∑
g−1h=t

Pg,h, for all t ∈ B2d(e,S)

4. Compute
√
P = Q = [ -----→qe, . . . , -----------------------------→qgn]

5. Finally: ξg = 〈~x, -------→qg〉 and ∆2 − λ∆ =∑g∈~x ξg
∗ξg.



Action Plan

1. Pick G = 〈S|R〉;

2. Set ~x = (e,g1,g2, . . . ,gn), gi ∈ Bd(e,S) (d = 2, 3, . . .);
3. Solve the problem (numerically):

maximize: λ
subject to: P å 0, P ∈M~x

λ á 0

(∆2 − λ∆)t = ∑
g−1h=t

Pg,h, for all t ∈ B2d(e,S)

4. Compute
√
P = Q = [ -----→qe, . . . , -----------------------------→qgn]

5. Finally: ξg = 〈~x, -------→qg〉 and ∆2 − λ∆ =∑g∈~x ξg
∗ξg.



Action Plan

1. Pick G = 〈S|R〉;
2. Set ~x = (e,g1,g2, . . . ,gn), gi ∈ Bd(e,S) (d = 2, 3, . . .);

3. Solve the problem (numerically):

maximize: λ
subject to: P å 0, P ∈M~x

λ á 0

(∆2 − λ∆)t = ∑
g−1h=t

Pg,h, for all t ∈ B2d(e,S)

4. Compute
√
P = Q = [ -----→qe, . . . , -----------------------------→qgn]

5. Finally: ξg = 〈~x, -------→qg〉 and ∆2 − λ∆ =∑g∈~x ξg
∗ξg.



Action Plan

1. Pick G = 〈S|R〉;
2. Set ~x = (e,g1,g2, . . . ,gn), gi ∈ Bd(e,S) (d = 2, 3, . . .);
3. Solve the problem (numerically):

maximize: λ
subject to: P å 0, P ∈M~x

λ á 0

(∆2 − λ∆)t = ∑
g−1h=t

Pg,h, for all t ∈ B2d(e,S)

4. Compute
√
P = Q = [ -----→qe, . . . , -----------------------------→qgn]

5. Finally: ξg = 〈~x, -------→qg〉 and ∆2 − λ∆ =∑g∈~x ξg
∗ξg.



Action Plan

1. Pick G = 〈S|R〉;
2. Set ~x = (e,g1,g2, . . . ,gn), gi ∈ Bd(e,S) (d = 2, 3, . . .);
3. Solve the problem (numerically):

maximize: λ
subject to: P å 0, P ∈M~x

λ á 0

(∆2 − λ∆)t = ∑
g−1h=t

Pg,h, for all t ∈ B2d(e,S)

4. Compute
√
P = Q = [ -----→qe, . . . , -----------------------------→qgn]

5. Finally: ξg = 〈~x, -------→qg〉 and ∆2 − λ∆ =∑g∈~x ξg
∗ξg.



Action Plan

1. Pick G = 〈S|R〉;
2. Set ~x = (e,g1,g2, . . . ,gn), gi ∈ Bd(e,S) (d = 2, 3, . . .);
3. Solve the problem (numerically):

maximize: λ
subject to: P å 0, P ∈M~x

λ á 0

(∆2 − λ∆)t = ∑
g−1h=t

Pg,h, for all t ∈ B2d(e,S)

4. Compute
√
P = Q = [ -----→qe, . . . , -----------------------------→qgn]

5. Finally: ξg = 〈~x, -------→qg〉 and ∆2 − λ∆ =∑g∈~x ξg
∗ξg.



Can we certify that the numerical result is sound?

[insert two papers here...]

Yes we can!
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Example: SL(3,Z)

√
P = Q ∈M~x , where ~x = B2(e, E(3)), i.e. rows and columns are indexed by

elements in (SL(3,Z), E(3)) of word length à 2. In this case

∆2 − 0.28∆ = 121∑
i=1
ξ∗i ξi + r, ‖r‖1 ∈ [3.8508, 3.8511] · 10−7



Example: SAut(F5)

ñ use symmetisation to simplify the optimisation problem considerably

ñ run computations for 3 weeks
ñ Heureka! we found that

∆5
2 − 1.2999∆5 ∈ Σ2ISAut(F5),

i.e. SAut(F5) has property (T)!
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Squaring the Laplacian



Setting the scene

ñ Gn denotes SL(n,Z) or SAut(Fn), Gn ↩ Gn+1.

ñ Sn denotes the standard generating set of Gn (elementary matrices or
transvections)

ñ each generating set admits action of An as the subgroup of the “Weyl
group”.

ñ the alternatig group An acts on the set En of edges of
(n− 1)-dimensional simplex (action on tuples)

ñ there is an An-equivariant function ln : Sn → En, which assignes
(doubly-indexed) generators to edges of the standard (n− 1) simplex.
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ñ for each edge e ∈ En let ∆e denote the edge Laplacian, i.e.

∆e =
∣∣l−1(e)∣∣− ∑

g∈l−1(e)
g.

Lemma
For every n á 3 we have

∆n =
∑
e∈Cn

∆e =
1

(n− 2)!
∑
σ∈An

σ(∆{1,2}).
Moreover, for m á n á 3 we have

∑
σ∈Am

σ(∆n) =
(
n
2

)
· (m− 2)!∆m.
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How to square the Laplacian?

∆2
n =

∑
e∈En

∆e

2

=
∑
e

∑
f
∆e∆f =

ñ two edges may either:
ñ coincide (they share both vertices)
ñ be adjacent (they share exactly one vertex )
ñ be oposite (the share no vertices)

=
∑
e∈En

∆e
2

︸ ︷︷ ︸
Sqn

+
∑
e∈En

∑
f∈Adj(e)

∆e∆f︸ ︷︷ ︸
Adjn

+
∑
e∈En

∑
f∈Op(e)

∆e∆f︸ ︷︷ ︸
Opn

.
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ñ Key observation: generators assigned to opposite edges commute!,
hence for a summand of Opn

∆e∆f =
1
4
∑
g∈e

∑
h∈f
(1− g)∗(1− g)(1− h)∗(1− h)

1
4
∑
g∈e

∑
h∈f

(
(1− g)(1− h)

)∗(1− g)(1− h)
is a sum of squares! Thus Opn is always a sum of squares.

ñ Intuition: Opn will dominate Adjn for n á 6.
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∑
h∈f

(
(1− g)(1− h)

)∗(1− g)(1− h)
is a sum of squares! Thus Opn is always a sum of squares.

ñ Intuition: Opn will dominate Adjn for n á 6.
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Reducing to the single case: SL(3,Z)

Lemma
For m á n á 3 we have∑

σ∈Am
σ(Adjn) = n(n− 1)(n− 2)

(m− 3)!
2 Adjm .

Corollary (SL(m,Z) has property (T))
For all m á 3 there exists (an explicit) αm such that

∆2
m −αm∆m = Sqm+Opm+Adjm−αm∆m ∈ Σ2I[SL(m,Z)].

Proof.
The action of Am on Gn is by automorphisms hence it preserves the sum of
squares cone in I[SL(m,Z)]. By (single!) computer calculation

Adj3−0.157∆3 ∈ Σ2I[SL(3,Z)],
therefore for all m ≥ 3 and some Cm, αm > 0∑

σ∈Am
σ
(
Adj3−0.157∆3

)
= C

(
Adjm−αm∆m

)
∈ Σ2I[SL(m,Z)].
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Lemma
For m á n á 4 we have∑

σ∈Am
σ(Opn) = 2

(
n
2

)(
n− 2
2

)
(m− 4)!Opm .

Lemma
If Adj5+2Op5−β∆5 ∈ Σ2ISAut(F5), then ∆2

m − βm∆m ∈ Σ2ISAut(Fm).
Again by computer calculation we can prove that indeed

Adj5+2Op5−0.138∆5 ∈ Σ2I[SAut(F5)].
Corollary
SAut(Fm) has property (T) for all m á 7.

(but we can do n = 6 as well!)
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Kazhdan constants: SL(n,Z)

Żuk, 1999 κ(SLn(Z),Sn) à
√
2
n

Kassabov, 2005 1
42
√
n+ 860 à κ(SLn(Z),Sn).

These give e.g. for N = 7

0.00102 à

0.24397

à κ(SLn(Z), Sn) à 0.53452.

Kaluba-Kielak-Nowak

√
0.5(n− 2)
n2 − n à κ(SLn(Z),Sn) for N á 6.
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Kazhdan constants: SAut(Fn)

Kaluba-Nowak-Ozawa, 2017 0.18027 à κ(SAut(F5),S5).

Results of KKN:

ñ 0.00983 à κ(SAut(F6),S6) (by di�erent method),
ñ 0.05233 à κ(SAut(F7),S7) (by examining Adj5−2Op5),
ñ 0.04965 à κ(SAut(F8),S8) (by examining Adj5−2Op5),
ñ 0.14606 à κ(SAut(F9),S9) (by examining Adj5−3Op5),
ñ ...

and in general for N á 9:√
1.316(n− 2)
6(n2 − n) à κ(SAut(Fn),Sn).
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[...] certain things �rst became clear tome by amechan-
ical method, although they had to be proved by geom-
etry afterwards [...] But it is of course easier, when we
have previously acquired, by the method, some knowl-
edge of the questions, to supply the proof than it is to
�nd it without any previous knowledge.

(The Method of Mechanical Theorems, Archimedes)
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