Certifying numerical estimates of spectral gaps

Marek Kaluba **joint work with Piotr Nowak**

Mathematical Institute of Polish Academy of Sciences, Warsaw Adam Mickiewicz University, Poznań

Outline

• **Graph Laplacians** • **Group Laplacians** • **Positivity** • **SDP optimisation** • **Tables and pictures**

[Graph Laplacians](#page-2-0)

Graph Laplacians

What is a graph Laplacian?

Definition

If Σ is a simplicial complex then

$$
\Delta = \partial_1 \circ \delta_1
$$

is its Laplacian.

$$
C^{0}(\Sigma, \mathbb{F}) \xrightarrow{\delta_{1}} C^{1}(\Sigma, \mathbb{F})
$$
\n
$$
C_{0}(\Sigma, \mathbb{F}) \xleftarrow{\partial_{1}} C_{1}(\Sigma, \mathbb{F})
$$

Alternatively: for $G = \Sigma^{(1)}$

$$
\Delta = \deg(G) - adj(G).
$$

- 1. $\Delta = \partial \delta = \partial \partial^*$ is symmetric, non-negative;
- 2. eigenvalues of Δ are real and non-negative;
- 3. eigenvectors of [∆] are "smoothly varying functions on *^G*";
- 4. dim ker $\Delta = \dim H_0$;
- 5. if *G* is connected then $\lambda_1 > 0$ is called the **spectral gap**

$$
0=\lambda_0<\lambda_1\leq\cdot\cdot\cdot\leq\lambda_n.
$$

- 6. (normalised) [∆] is a (uniform) random walk operator on *^G*;
- 7. properties of random walk on *G* are strongly related to eigenvalues: after

$$
s \geq \frac{1}{\lambda_1 \log \frac{\max\sqrt{deg(v)}}{\epsilon \min\sqrt{deg(x)}}}
$$

steps random walk will be *ε*-close to uniform distribution.

[Group Laplacians](#page-6-0)

Definition

Let $G = \langle S | R \rangle$ be a group. Cayley graph Cay (G, S) is a graph (V, E) , where

 $V = G$ and $(q, h) ∈ E \iff qh^{-1} ∈ S$.

We usually assume $S = S^{-1}$.

Cay*(G,* S*)* are very symmetric: links of all vertices are isomorphic.

Definition

 Δ (*G, S*) = Δ (*Cay*(*G, S*))

Note

[∆]: ^R*ⁿ* [→] ^R*ⁿ* , but vertices are indexed by elements of *G*:

$$
\Delta: \mathbb{R}[G] \to \mathbb{R}[G]
$$

$$
\Delta = |S| \operatorname{Id} - \sum_{g \in S} g = \frac{1}{2} \sum_{g \in S} (1 - g)^* (1 - g)
$$

Also: for fixed G and S:

$$
\Delta^2 - \lambda \Delta \geq 0 \iff \lambda \in [0, \lambda_1).
$$

WHY? **Infinite groups**, e.g. $SL(n, \mathbb{Z})$'s.

- Random group elements (estimating stabilising times)
- Expanders
- Connection to Kazhdan's property (T): constant *κ(G,* S*)* is estimated:

$$
\sqrt{\frac{2\lambda_1(G, S)}{|S|}} \le \kappa(G, S).
$$

[Positivity](#page-12-0)

How to prove that a polynomial $f \in \mathbb{R}[x]$ is positive?

Theorem

A the set of points satisfying

$$
f_i = 0 \quad \text{for } i = 1, \dots, n
$$
\n
$$
g_j \ge 0 \quad \text{for } j = 1, \dots, m
$$

is empty if and only if −1 ∈ *I(fi)* + C*(gj) (positive cone of g^j 's), i.e.*

$$
-1 = \sum a_i f_i + \sum_{\mu \in \{0,1\}^m} s_{\mu} g_1^{\mu_1} \cdots g_m^{\mu_m}
$$

where $s_{\mu} \in \Sigma^2$ (is a sum of squares).

Easy version: $(i = 0, j = 1)$:

a polynomial $q \geq 0$ *iff it is a sum of squares of rational functions.*

Problem

How to nd such sum of squares (SOS) decomposition?

By evaluating

$$
f(x,y) = (1, x, y) \begin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{pmatrix} 1 \ x \ y \end{pmatrix}
$$

we can obtain any polynomial *f* of degree 2 in *x* and *y*.

For *f* to be a SOS we just need $(a_{ij}) = A \ge 0$ to be **semi-positive definite**.

[SDP optimisation](#page-16-0)

Linear programming:

- optimise linear functional
- on the set constrained by hyperplanes (polytope)
- strong duality, unique solution

Semi-definite programming

- optimise linear functional
- on a polytope intersected with the cone of SDP matrices (spectrahedron)
- weak duality, non-unique solutions

Example (SDP problem)

maximise:
$$
y
$$

\nsubject to: $c - y = 1$
\n $b_1 + b_2 = -4$
\n $a = 2$
\n
$$
\begin{bmatrix}\nc & b_1 & 0 \\
b_2 & a & 0 \\
0 & 0 & -y\n\end{bmatrix} \succeq 0
$$

tries to maximise *γ* as long as 2*x* ² − 4*x* + 1 − *γ* ≥ 0.

Theorem (Helton)

 $f \in \mathbb{R}[G]$ *fulfills*

 $f(A_1, \ldots, A_n) \ge 0$

 f *or all* A_i ∈ $Sym_s(\mathbb{R})$ (and all $s \ge 1$) *if and only if* $f \in \Sigma^2 \mathbb{R}[G]$, *i.e.*

f = $\sum \xi_j^* \xi_j$, for some $\xi_i \in \mathbb{R}[G]$.

Note

$$
\Delta = \sum_{g \in S} (1 - g)^* (1 - g) \in \Sigma^2 \mathbb{R}[G].
$$

\n
$$
f(A_1, \ldots, A_n) \ge 0 \text{ for all } A_i \in \text{Sym}_S(\mathbb{R}) \text{ is equivalent to}
$$

\n
$$
\pi(f) \ge 0 \quad \text{for all } C^* \text{-algebra representations of } G.
$$

Action Plan

- 1. Pick $G = \langle S | R \rangle$;
- 2. Set *E* = *[e, g*¹ *, g*2*, . . . , gn]* for *gⁱ* ∈ *B*2*(e,* S*)*;
- 3. Solve the problem:

maximize:
$$
\lambda
$$

subject to: $P \ge 0$, $P \in M_E(\mathbb{R})$
 $\Delta^2 - \lambda \Delta = EPE^T$
 $\lambda \ge 0$

4. Compute $\sqrt{P} = Q = [q_1, ..., q_n]$ 5. Finally: $\xi_j = \langle E, q_j \rangle$ and $\Delta^2 - \lambda \Delta = \sum \xi_j^* \xi_j$. *How do we certify that the result is sound?*

Using non-commutative real algebraic geometry.

Proposition (Ozawa)

For a ∗-invariant *ξ* ∈ *I[G]* ⊂ *C* [∗]*G* the following are equivalent:

- *ξ* is non-negative
- *^ξ* ⁺ *^ε*[∆] [∈] ^Σ 2 *I[G]* for all *ε >* 0.

Lemma (Netzer&Thom)

Let r ∈ *I*[*G*] ⊂ ℝ[*G*] *such that* $supp(r)$ ⊂ *B_d*(*e). Then*

 $r + 2^{d-1} \|r\|_1 \cdot \Delta \in \Sigma^2 \mathbb{R}[G].$

Action Plan 2

- 1. Pick $G = \langle S | R \rangle$;
- 2. Set $E = [e, g_1, g_2, \ldots, g_n]$ for $g_i \in B_2(e, S)$;
- 3. Solve the problem: maximize: *λ*

subject to:
$$
P \ge 0
$$
, $P \in M_E(\mathbb{R})$
\n $\Delta^2 - \lambda \Delta = EPE^T$
\n $\lambda \ge 0$;

4. Compute $Q = [q_1, \ldots, q_n] \sim \sqrt{P}$:

$$
P \rightarrow \sqrt{P} \rightarrow \sqrt{P}_\mathbb{Q} \rightarrow \sqrt{P}_\mathbb{Q}^{aug} \rightarrow Q \in \mathbb{M}_E(RIF)
$$

5. Setting ξ ^{*i*} = \langle *E*, *q*^{*i*}) we have

 $\Delta^2 - \lambda \Delta = \sum \xi_j^* \xi_j + r$, where $r \in I[G]$ and $||r||_1 < \varepsilon$.

6. Finally Δ² − (λ − 2^{*d*-1}ε)Δ = $\sum \xi_j^* \xi_j + (r + 2^{d-1} εΔ) ≥ 0$, hence

 λ_1 (*G*, *S*) ≥ (λ − 2^{*d*−1}*ε*) is certified.

[Tables and pictures](#page-24-0)

These belong to $M_E(\mathbb{R})$, where $E = B_2(e, E(3))$, i.e. rows and columns are indexed by elements in $(SL(3, \mathbb{Z}), E(3))$ of word length ≤ 2 .

Thank You

• **N.Ozawa, Noncommutative Real Algebraic Geometry of Kazhdan's Property (T).** *Journal of the Institute of Mathematics of Jussieu***, 15 (01):85–90, 2016.**

• **T.Netzer and A.Thom. Kazhdan's Property (T) via Semidenite Optimization.** *Experimental Mathematics***, 24(3):371–374 2015.**

• **M.Kaluba and P.Nowak, Certifying numerical estimates of spectral gaps,** *ArXiV: 1703.09680*