Certifying numerical estimates of spectral gaps

Marek Kaluba joint work with Piotr Nowak

Mathematical Institute of Polish Academy of Sciences, Warsaw Adam Mickiewicz University, Poznań

Outline

Graph Laplacians Group Laplacians Positivity SDP optimisation Tables and pictures

Graph Laplacians

Graph Laplacians

What is a graph Laplacian?

Definition

If $\boldsymbol{\Sigma}$ is a simplicial complex then

$$\Delta = \partial_1 \circ \delta_1$$

is its Laplacian.

$$\begin{array}{ccc} C^{0}(\Sigma,\mathbb{F}) & & \stackrel{\delta_{1}}{\longrightarrow} C^{1}(\Sigma,\mathbb{F}) \\ & & & & \\ & & & \\ & & & \\ C_{0}(\Sigma,\mathbb{F}) & & \stackrel{\partial_{1}}{\longleftarrow} C_{1}(\Sigma,\mathbb{F}) \end{array}$$

Alternatively: for $G = \Sigma^{(1)}$

$$\Delta = \deg(G) - \operatorname{adj}(G).$$

(3	-1	-1	0	-1	0	0	0)
	-1	3	0	-1	0	-1	0	0
	-1	0	3	-1	0	0	-1	0
	0	-1	-1	3	0	0	0	-1
	-1	0	0	0	3	-1	-1	0
	0	-1	0	0	-1	3	0	-1
	0	0	-1	0	-1	0	3	-1
	0	0	0	-1	0	-1	-1	3)

1. $\Delta = \partial \delta = \partial \partial^*$ is symmetric, non-negative;

- 2. eigenvalues of Δ are real and non-negative;
- 3. eigenvectors of Δ are "smoothly varying functions on G";
- 4. dim ker $\Delta = \dim H_0$;
- 5. if **G** is connected then $\lambda_1 > 0$ is called the **spectral gap**

$$0 = \lambda_0 < \lambda_1 \leq \cdots \leq \lambda_n.$$

- 6. (normalised) Δ is a (uniform) random walk operator on G;
- 7. properties of random walk on **G** are strongly related to eigenvalues: after

$$s \ge \frac{1}{\lambda_1 \log \frac{\max \sqrt{\deg(v)}}{\epsilon \min \sqrt{\deg(x)}}}$$

steps random walk will be ϵ -close to uniform distribution.

Group Laplacians

Definition

Let $G = \langle S | \mathcal{R} \rangle$ be a group. Cayley graph Cay(G, S) is a graph (V, E), where

V = G and $(g,h) \in E \iff gh^{-1} \in S.$

We usually assume $S = S^{-1}$.

Cay(G, S) are very symmetric: links of all vertices are isomorphic.

Definition

 $\Delta(\mathsf{G},S) = \Delta(\mathsf{Cay}(\mathsf{G},S))$

Note

 $\Delta \colon \mathbb{R}^n \to \mathbb{R}^n$, but vertices are indexed by elements of **G**:

$$\Delta \colon \mathbb{R}[G] \to \mathbb{R}[G]$$
$$\Delta = |S| \operatorname{Id} - \sum_{g \in S} g = \frac{1}{2} \sum_{g \in S} (1-g)^* (1-g)$$

Also: for fixed **G** and S:

$$\Delta^2 - \lambda \Delta \ge 0 \iff \lambda \in [0, \lambda_1).$$

WHY? Infinite groups, e.g. $SL(n, \mathbb{Z})$'s.

- Random group elements (estimating stabilising times)
- \cdot Expanders
- Connection to Kazhdan's property (T): constant $\kappa(G, S)$ is estimated:

$$\sqrt{\frac{2\lambda_1(G,S)}{|S|}} \le \kappa(G,S).$$

Positivity

How to prove that a polynomial $f \in \mathbb{R}[x]$ is positive?

Theorem

A the set of points satisfying

$$\begin{aligned} f_i &= 0 \quad for \ i = 1, \dots, n \\ g_j &\geq 0 \quad for \ j = 1, \dots, m \end{aligned}$$

is empty if and only if $-1 \in I(f_i) + C(g_j)$ (positive cone of g_j 's), i.e.

$$-1 = \sum a_i f_i + \sum_{\mu \in \{0,1\}^m} s_\mu g_1^{\mu_1} \cdots g_m^{\mu_m}$$

where $s_{\mu} \in \Sigma^2$ (is a sum of squares).

Easy version: (i = 0, j = 1):

a polynomial $g \ge 0$ iff it is a sum of squares of rational functions.

Problem

How to find such sum of squares (SOS) decomposition?

By evaluating

$$f(x,y) = (1,x,y) \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{pmatrix} 1 \\ x \\ y \end{pmatrix}$$

we can obtain any polynomial *f* of degree 2 in *x* and *y*.

For *f* to be a SOS we just need $(a_{ij}) = A \ge 0$ to be **semi-positive definite**.

SDP optimisation

Linear programming:

- optimise linear functional
- on the set constrained by hyperplanes (polytope)
- strong duality, unique solution

Semi-definite programming

- optimise linear functional
- on a polytope intersected with the cone of SDP matrices (spectrahedron)
- weak duality, non-unique solutions

Example (SDP problem)

maximise:
$$\gamma$$

subject to: $c - \gamma = 1$
 $b_1 + b_2 = -4$
 $a = 2$
 $\begin{bmatrix} c & b_1 & 0 \\ b_2 & a & 0 \\ 0 & 0 & -\gamma \end{bmatrix} > 0$

tries to maximise γ as long as $2x^2 - 4x + 1 - \gamma \ge 0$.

Theorem (Helton)

 $f \in \mathbb{R}[G]$ fulfills

 $f(A_1,\ldots,A_n) \ge 0$

for all $A_i \in Sym_s(\mathbb{R})$ (and all $s \ge 1$) if and only if $f \in \Sigma^2 \mathbb{R}[G]$, i.e.

 $f = \sum \xi_j^* \xi_j$, for some $\xi_i \in \mathbb{R}[G]$.

Note

•
$$\Delta = \sum_{g \in S} (1-g)^* (1-g) \in \Sigma^2 \mathbb{R}[G].$$

• $f(A_1, \dots, A_n) \ge 0$ for all $A_i \in \text{Sym}_{S}(\mathbb{R})$ is equivalent to

 $\pi(f) \ge 0$ for all C^* -algebra representations of G.

Action Plan

- 1. Pick $G = \langle S | \mathcal{R} \rangle$;
- 2. Set $E = [e, g_1, g_2, ..., g_n]$ for $g_i \in B_2(e, S)$;
- 3. Solve the problem:

maximize:
$$\lambda$$

subject to: $P \geq 0$, $P \in M_E(\mathbb{R})$
 $\Delta^2 - \lambda \Delta = EPE^T$
 $\lambda \geq 0$

4. Compute $\sqrt{P} = Q = [q_1, \dots, q_n]$ 5. Finally: $\xi_i = \langle E, q_i \rangle$ and $\Delta^2 - \lambda \Delta = \sum \xi_i^* \xi_i$. How do we certify that the result is sound?

Using non-commutative real algebraic geometry.

Proposition (Ozawa)

For a *-invariant $\xi \in I[G] \subset C^*G$ the following are equivalent:

- $\cdot \xi$ is non-negative
- $\xi + \varepsilon \Delta \in \Sigma^2 I[G]$ for all $\varepsilon > 0$.

Lemma (Netzer&Thom)

Let $r \in I[G] \subset \mathbb{R}[G]$ such that $supp(r) \subset B_d(e)$. Then

 $r+2^{d-1}\|r\|_1\cdot\Delta\in\Sigma^2\mathbb{R}[G].$

Action Plan 2

- 1. Pick $G = \langle S | \mathcal{R} \rangle$;
- 2. Set $E = [e, g_1, g_2, ..., g_n]$ for $g_i \in B_2(e, S)$;
- 3. Solve the problem: maximize: λ

subject to:
$$P \geq 0$$
, $P \in \mathbb{M}_{E}(\mathbb{R})$
 $\Delta^{2} - \lambda \Delta = EPE^{T}$
 $\lambda \geq 0;$

4. Compute $Q = [q_1, \ldots, q_n] \sim \sqrt{P}$:

$$P \to \sqrt{P} \to \sqrt{P}_{\mathbb{Q}} \to \sqrt{P}_{\mathbb{Q}}^{aug} \to Q \in \mathbb{M}_{E}(RIF)$$

5. Setting $\xi_i = \langle E, q_i \rangle$ we have

 $\Delta^2 - \lambda \Delta = \sum \xi_j^* \xi_j + r, \text{ where } r \in I[G] \text{ and } ||r||_1 < \varepsilon.$

6. Finally $\Delta^2 - (\lambda - 2^{d-1}\varepsilon)\Delta = \sum \xi_j^* \xi_j + (r + 2^{d-1}\varepsilon\Delta) \ge 0$, hence

 $\lambda_1(G,S) \ge (\lambda - 2^{d-1}\varepsilon)$ is certified.

Tables and pictures

These belong to $\mathbb{M}_{E}(\mathbb{R})$, where $E = B_{2}(e, E(3))$, i.e. rows and columns are indexed by elements in $(SL(3, \mathbb{Z}), E(3))$ of word length ≤ 2 .

G	п	т	λ_1	$ r _{1} <$	lbκ	< <i>K</i>	ubκ
SL(3,ℤ)	390,287	935,021	0.54050	$5.2 \cdot 10^{-7}$	0.19	0.30014	0.81650
$SL(4,\mathbb{Z})$	93,962	263,122	1.31500	$5.2 \cdot 10^{-8}$	0.00106	0.33103	0.70711
$SL(5,\mathbb{Z})$	628,882	1,757,466	2.65000	$2.0 \cdot 10^{-4}$	0.00105	0.36400	0.63246

Thank You

N.Ozawa, Noncommutative Real Algebraic Geometry of Kazhdan's Property (T). *Journal of the Institute of Mathematics of Jussieu*, 15 (01):85–90, 2016.

T.Netzer and A.Thom. Kazhdan's Property (T) via Semidefinite Optimization. *Experimental Mathematics*, 24(3):371–374 2015.

M.Kaluba and P.Nowak, Certifying numerical estimates of spectral gaps, *ArXiV*: 1703.09680