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Graph Laplacians



Graph Laplacians

What is a graph Laplacian?
Definition
If X is a simplicial complex then

A:a1051

is its Laplacian.

Cc°(z,F) L C'(Z,F)

0
Co(SF) —— (5 F)
Alternatively: for G = =V

A = deg(G) — adj(G).






Properties of A(G)

1. A =006 =00* is symmetric, non-negative;

. eigenvalues of A are real and non-negative,

. eigenvectors of A are “smoothly varying functions on G”;
. dimker A = dim Hy;

g B~ W N

. if Gis connected then A; > 0 is called the spectral gap
0=Ag <A <--- <A,
6. (normalised) A is a (uniform) random walk operator on G;

7. properties of random walk on G are strongly related to eigenvalues: after

A lo max - {deg(v)
1108 &£min /deg(x)

steps random walk will be e-close to uniform distribution.



Group Laplacians



Cayley Graphs

Definition
Let G = (S|R) be a group. Cayley graph Cay(G, S) is a graph (V, E), where

V=G and
(g,h) €E <= gh'€eSs.

We usually assume § = S~

Cay(G, S) are very symmetric: links of all vertices are isomorphic.









Group Laplacians

Definition
A(G,S) = A(Cay(G, S))

Note
A: R" — R", but vertices are indexed by elements of G:

A: R[G] — R[G]
A=ISlld-3 g=2 3 (1-)*(1-9)

ges ges

Also: for fixed G and S:

A2P—AA =0 = A€[0,A).

WHY? Infinite groups, e.g. SL(n, Z)’s.



- Random group elements (estimating stabilising times)
- Expanders

- Connection to Kazhdan's property (T): constant k (G, S) is estimated:

2A4(G, S)
lils\ < k(G,S).



Positivity




How to prove that a polynomial f € R[x] is positive?



Kirvine-Stengle’s Positivstellensatz

Theorem
A the set of points satisfying

fi=0 fori=1,...,n
gi=0 forj=1,...,m

is empty if and only if =1 € I(fi) + C(g;) (positive cone of g;’s), i.e.

—1=>afi+ D sugi"---gh

uefoaym
where s, € 3* (is a sum of squares).

Easy version: (i = 0,j = 1):

a polynomial g > 0 iff it is a sum of squares of rational functions.



SOS decomposition

Problem
How to find such sum of squares (SOS) decomposition?

By evaluating

f(X,y> = (1,X;y) ay;y Qyp QA X
3 Q3 033 | \Y
we can obtain any polynomial f of degree 2 in x and y.

For f to be a SOS we just need (aj;) = A = 0 to be semi-positive definite.



SDP optimisation




Mathematical Programming

Linear programming:

- optimise linear functional
- on the set constrained by hyperplanes (polytope)

- strong duality, unique solution
Semi-definite programming

- optimise linear functional

- on a polytope intersected with the cone of SDP matrices
(spectrahedron)

- weak duality, non-unique solutions



SDP problem formulation

Example (SDP problem)

maximise: 'y

subjectto: c—y =1

by +b, = -4

a=2
c by O
b, a 0 |>0
0 0 -y

tries to maximise y as longas 2x* —4x+1—y = 0.



NC-Positivstellensatz

Theorem (Helton)

f € R[G] fulfills
F(Ary .. An) =0

for all A; € Sym¢(R) (and all s = 1) if and only if f € 32R[G], i.e.

f=> %", forsome & € R[G].

Note

“A=3es(1-9)*(1-g) € 22R[G].
- f(Aq,...,Ay) = 0 forall A; € Sym (R) is equivalent to

(f) = 0 forall C*-algebra representations of G.



Action Plan

1. Pick G = (SIR);
2. SetE =[e,g1,92,.-.,9n] for gi € By(e, S);
3. Solve the problem:

maximize: A

subjectto: P >0, P& Mg(R)
A? — AA = EPET
A=0

4 Compute VP =Q = [q1,...,qn]
5. Finally: & = (E,q;) and A2 — AA = Y &™E;.



How do we certify that the result is sound?

Using non-commutative real algebraic geometry.



Certifying correctness

Proposition (Ozawa)
For a x-invariant & € I[G] c C*G the following are equivalent:

- & is non-negative

- E+eAe3?G] forall e > 0.

Lemma (Netzer&Thom)
Let r € I[G] € R[G] such that supp(r) C B4(e). Then

r+2%"rll; - A € Z*R[G].



Action Plan 2

1. Pick G = (S|R);
2. SetE=[e,g1,G2,---,9n] fOr gi € By(e, S);
3. Solve the problem: maximize: A
subjectto: P >0, Pe M(R)

A? — AA = EPET

A>0;
4 Compute Q = [G1y...,Gn] ~ VP

P~ P~ Pq — Py — Qe Me(RIF)

5. Setting & = (E, gi) we have

A2—AA =D E*E +r, wherer e l[G]and [Irl; < &.
6. Finally A2 — (A —=2976)A = S " & + (r+ 29 "eA) = 0, hence

A(G,S) = (A —29"¢) s certified.



Tables and pictures




Group SL;(Z)
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These belong to Mg(R), where E = B, (e, E(3)), i.e. rows and columns are
indexed by elements in (SL(3,Z),E(3)) of word length < 2.



G n m Aq [l < by <K uby

SL(3,Z) 390,287 935,021 0.54050 5.2:1077  0.19 0.30014 | 0.81650
SL(4,7) 93,962 263,122 1.31500  5.2:107%  0.00106 | 0.33103 0.70711
SL(5,Z) 628,882 1,757,466  2.65000 2.0-10"“* 0.00105 | 0.36400 | 0.63246




Thank You
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