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Notation / Convention

ñ G = 〈S |R〉 is a �nitely presented group generated by a �xed symmetric
generating set (i.e. S−1 = S).



Group Laplacians



Group Laplacian ∆
De�nition

∆(G,S) = ∆(Cay(G,S)) = |S|(Id−MS)

(identity minus random walk operator);

∆ = |S|e−∑
g∈S

g = 1
2
∑
g∈S
(1− g)∗(1− g) ∈ R[G]

ñ the operator ∆ is ∗-invariant,
ñ spectrum of ∆ is real and non-negative;
ñ the second eigenvalue λ1 is called the spectral gap

0 = λ0 à λ1 à · · ·
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Property (T)

ñ For an orthogonal representation π : G→ B(H ) of G on a (real) Hilbert
spaceH denote by

Hπ =
{
v ∈H : π(g)v = v for all g ∈ G

}
the (closed) subspace of π-invariant vectors.

ñ We de�ne

κ(G,S, π) = inf
‖ξ‖=1

{
sup
g∈S
‖π(g)ξ − ξ‖H : ξ ∈ (Hπ)⊥

}
.

De�nition
The Kazhdan’s constant κ(G,S) is de�ned as

κ(G,S) = inf
π
κ(G,S, π)

over all orthogonal representations π of G. We say that G has the
Kazhdan’s property (T) if and only if there exists a (�nite) generating set S
such that κ(G,S) > 0.
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Property (T) and SAut(Fn)

ñ It is known that SL(n,Z) has property (T) i� n á 3;

ñ SAut(Fn) is a noncommutative analogue of SL(n,Z);
ñ SAut(F3) does not have (T)... (McCool 1989);
ñ Does SAut(Fn) have property (T) for n á 4? (Serre 70s, Lubotzky 1994,
Lubotzky-Pak 2001, Fisher 2006, Bridson-Vogtmann 2006, Breuillard 2014,
and many more);

ñ Provide a constructive (computable) proof for n = 5.
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Property (T) and SAut(Fn)

Random group elements in �nite groups:

estimating mixing time of the
Product Replacement Algorithm depends on the Kazhdan’s constant of
SAut(Fn), the special authomorphism group of the free group:

Theorem (Lubotzky & Pak, 2000)
Let K be a �nite group generated by k ≤ n elements. If SAut(Fn) has
property (T) with constant κ = κ(SAut(Fn), {transvections}) > 0, then PRA
walk on Γn = Γn(K) has fast mixing rate, i.e.∥∥∥Qt(g) − U∥∥∥tv à ε for t á 16

κ2
log
|Γn|
ε
∼ O

((n
κ

)2
log
|K|
ε

)

(Q(g) is a random walk on the graph Γn starting at generating n-tuple (g)).
Note
We do observe fast mixing rate in practice for large n.
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Property (T) and ∆

ñ Connection to eigenvalues of ∆: κ(G,S) can be estimated as√
2λ1
|S| à κ(G,S).

ñ λ ∈ [0, λ1) ⇐⇒ ∆2 − λ∆ á 0

Corollary
Let G = 〈S| . . .〉 be a �nitely generated group. If there exists λ > 0 such that∆2 − λ∆ á 0, then G has property (T) with√

2λ
|S| à κ(G,S).
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How to prove that ∆2 − λ∆ á 0 ?



How to prove that a polynomial f á 0 ?



Positivity & SDP



Hilbert’s 17th problem

Theorem (Hilbert’s Positivstellensatz, 1888)
An everywhere non-negative polynomial p ∈ Σ2R[x1, . . . , xn] (is a sum of
squares) if and only if either

ñ n = 1, or
ñ n = 2 and deg p = 2, 4.

Example (Motzkin, 1970s)
x4y2 + x2y2 − 3x2y2 + 1 á 0 but not SOS.

Theorem (Artin, 1924)

p á 0 ⇐⇒ ∃q : q2p ∈ Σ2R[x1, . . . xn]
(i.e. p is a sum of squares of rational functions).

Example (Motzkin, 1970s)
x4y2 + x2y2 − 3x2y2 + 1 á 0 is SOS if You multiply is by x2 + y2 + 1.
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SOS decomposition

Problem
How to �nd such sum of squares (SOS) decomposition?

By evaluating

f(x, y) = (1, x, y)


p11 p12 p13
p21 p22 p23
p31 p32 p33



1

x

y


we can obtain any polynomial of degree 2 in x and y with coe�cients linear
functions of pij.

For f to be a SOS we just need (pij) = P to be semi-positive de�nite,

since then P = QTQ and (for (1, x, y)T = ~x)

f = ~xTP~x = ~xTQT · Q~x = (Q~x)T · (Q~x) .
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Mathematical Programming

Linear programming:

ñ optimise linear functional
ñ on the set constrained by hyperplanes (polytope)

Semi-de�nite programming

ñ optimise linear functional
ñ on a polytope intersected with the cone of SPD matrices
(spectrahedron)

ñ weak duality, non-unique solutions
ñ even feasibility is a hard problem!
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SDP problem formulation

variables: a,b1,b2, c, λ.

Example (SDP problem)

maximise: λ

subject to:

 c b2
b1 a

 å 0
c = 1− λ
b1 + b2 = 4
a = 2

tries to maximise λ as long as (2x2 + 4x+ 1)− λ á 0.
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NC-Positivstellensatz

ñ Σ2R[G] = {∑i ξ∗i ξi : ξ ∈ R[G]
}

ñ ξ á 0 ⇐⇒ π(ξ) å 0 in every ∗-representation of R[G]

Theorem (Schmüdgen)
For any ∗-invariant element ξ ∈ R[G]

ξ á 0 ⇐⇒ ξ + εu ∈ Σ2R[G]
for all ε > 0, where u is an interior point of Σ2R[G].
Example
1 is an interior point of Σ2R[G], i.e. to show that ∆2 − λ∆ á 0 it’s enough to
answer

Is ∆2 − λ∆+ ε ∈ Σ2R[G] for all ε?

This of no use for us: SOS decompositions ∆2 − λ∆+ ε =∑ξ∗i ξi may be
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Proposition (Ozawa, 2015)∆ is an interior point of Σ2I[G] = I[G]∩ Σ2R[G]

, i.e.
for a ∗-invariant element ξ ∈ I[G]

ξ á 0 ⇐⇒ ξ + ε∆ ∈ Σ2I[G]
for all ε > 0.

Example
If we can show that ∆2 − λ∆+ ε0∆ =∑ξ∗i ξi for a single �xed ε0, then

∆2 − (λ− ε0)∆+ ε∆ =∑ξ∗i ξi + ε
∑
(1− g)∗(1− g) ∈ Σ2I[G]

for all ε simultanuously!
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Action Plan

1. Pick G = 〈S|R〉;
2. Set ~x = (e,g1,g2, . . . ,gn), gi ∈ Bd(e,S) (d = 2, 3, . . .);
3. Solve the problem (numerically):

maximize: λ
subject to: P å 0, P ∈M~x

λ á 0

(∆2 − λ∆)t = ∑
g−1h=t

Pg,h, for all t ∈ B2d(e,S)

4. Compute
√
P = Q = [ -----→qe, . . . , -----------------------------→qgn]

5. Finally: ξg = 〈~x, -------→qg〉 and ∆2 − λ∆ =∑g∈~x ξg
∗ξg.
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How do we certify that the numerical result is sound?



Certifying correctness

Lemma (Netzer&Thom)
Let r ∈ I[G] ⊂ R[G] such that supp(r) ⊂ Bd(e). Then

r + 2d−1‖r‖1 ·∆ ∈ Σ2I[G].
Corollary
If ∆2 − λ∆ =∑ξ∗i ξi + r, then

∆2 −
(
λ− 2d−1‖r‖1

)∆ =∑ξ∗i ξi +
(
r + 2d−1‖r‖1∆) ∈ Σ2I[G],

i.e. ∆ has spectral gap of at least λ− 2d−1‖r‖1.
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4. Compute Q = [ -----→qe, . . . , -----------------------------→qgn] ∼
√
P

P→
√
P→

√
Pint →

√
Paugint → Q ∈M~x(RIF)

5. Setting ξg = 〈~x, -------→qg〉 we have∆2 − λ∆ =∑ξg
∗ξg + r, where r ∈ I[G] and ‖r‖1 < ε.

6. Finally ∆2 − (λ− 2d−1ε)∆ =∑ξ∗j ξj + (r + 2d−1ε∆) ≥ 0, hence
λ1(G,S) ≥ (λ− 2d−1ε) is certi�ed.
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Concrete examples



SL(3,Z)

√
P = Q ∈M~x , where ~x = B2(e, E(3)), i.e. rows and columns are indexed by

elements in (SL(3,Z), E(3)) of word length à 2. In this case

∆2 − 0.28∆ = 121∑
i=1
ξ∗i ξi + r, ‖r‖1 ∈ [3.8508, 3.8511] · 10−7



SL(n,Z)

G n m λ ‖r‖1 < lbκ < κ ubκ

SL(3,Z) 390,287 935,021 0.5405 5.2 · 10−7 0.19 0.30014 0.81650
SL(4,Z) 93,962 263,122 1.3150 5.2 · 10−8 0.00106 0.33103 0.70711
SL(5,Z) 628,882 1,757,466 2.6500 2.0 · 10−4 0.00105 0.36400 0.63246



SAut(F4)

G n m λ ‖r‖1 <

SAut(F4) 3,157,730 1,777,542 0.0100 7.4

(after weeks of computation)



SAut(F5)

G n m

SAut(F5) 21,538,881 11,154,301

ñ Find a �nite group K < Aut(SAut(Fn)) which keeps the generating set S
and (thus) ∆2 − λ∆ invariant (K = Z2 o S5);

ñ The optimisation problem for λ has a K-invariant solution
ñ Decompose B2d(e,S) into orbits of K (7229 of them)
ñ Decompose Bd(e,S) into irreducible representations of K
ñ Using minimal projection system for K reduce the size of the
optimisation problem ( 29 semide�nite constraints, 13233 variables)

ñ Solve the smaller problem and reconstruct the solution P of the larger
one.
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SAut(F5)

G n m λ ‖r‖1 < < κ

SAut(F5) 13,233 7,230 1.3000 2.1 · 10−6 0.18028
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[...] certain things �rst became clear tome by amechan-
ical method, although they had to be proved by geom-
etry afterwards [...] But it is of course easier, when we
have previously acquired, by the method, some knowl-
edge of the questions, to supply the proof than it is to
�nd it without any previous knowledge.

(The Method of Mechanical Theorems, Archimedes)
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