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Notation / Convention

> G = (S|R) is a finitely presented group generated by a fixed symmetric
generating set (ie. S = S).



GROUP LAPLACIANS
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Group Laplacian A

Definition
A(G,S) = A(Cay(G,S)) = |S|(Id — Ms)

(identity minus random walk operator);

A=\S|e—Zg=%2(1—9)*0—9)60&[6]

ges ges

> the operator A is x-invariant,
» spectrum of A is real and non-negative;

» the second eigenvalue A, is called the spectral gap

0:A0<A1<"'
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Property (T)

> For an orthogonal representation 7t: G — B(H') of G on a (real) Hilbert
space HH denote by

H™={veH  m(g)v=vforall g € G}
the (closed) subspace of 7r-invariant vectors.
» We define
K(6,5,m) = inf {supllm(@)§ ~ Ellar: € € (™" |.
1€1=1 L ges

Definition
The Kazhdan'’s constant (G, S) is defined as

k(G,S) = ip{f K(G,S, )

over all orthogonal representations 7t of G. We say that G has the
Kazhdan'’s property (T) if and only if there exists a (finite) generating set S
such that (G, S) > 0.
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It is known that SL(n, Z) has property (T) iff n > 3;
SAut(F,) is a noncommutative analogue of SL(n, Z);
SAut(F;) does not have (T)... (McCool 1989);

Does SAut(F,) have property (T) for n > 4? (Serre 70s, Lubotzky 1994,
Lubotzky-Pak 2001, Fisher 2006, Bridson-Vogtmann 2006, Breuillard 2014,
and many more);

Provide a constructive (computable) proof for n = 5.
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Property (T) and SAut(F,)

Random group elements in finite groups: estimating mixing time of the
Product Replacement Algorithm depends on the Kazhdan's constant of
SAut(F,), the special authomorphism group of the free group:

Theorem (Lubotzky & Pak, 2000)

Let K be a finite group generated by kR < n elements. If SAut(F,) has
property (T) with constant k = k(SAut(F,), {transvections}) > 0, then PRA
walk on T,, = T,,(K) has fast mixing rate, i.e.

16 IF,,I (n)2 IK|
<€ or > I ~0|(—) log—
v f & k) 8¢

(Q(g) is a random walk on the graph T, starting at generating n-tuple (g)).

HQ@

Note
We do observe fast mixing rate in practice for large n.
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Property (T) and A

» Connection to eigenvalues of A: k(G,S) can be estimated as

2,

< k(G,S).
|S| (6,5)
» A€ [0,A) &= A2-AA=0

Corollary
Let G = (S| ...) be a finitely generated group. If there exists A > 0 such that
A% — AA = 0, then G has property (T) with



How to prove that A> —AA>07?



How to prove that a polynomialf > 07?
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Hilbert's 17th problem

Theorem (Hilbert’s Positivstellensatz, 1888)

An everywhere non-negative polynomial p € 32R[x, ..., Xn] (is a sum of
squares) if and only if either

> n=1or

» n=2anddegp = 2,4

Example (Motzkin, 1970s)
x4y? + x2y? — 3x2y? + 1 > 0 but not SOS.

Theorem (Artin, 1924)
p=>0 < 3q:¢’p € Z*R[Xy,...X,]

(i.e. pis a sum of squares of rational functions).

Example (Motzkin, 1970s)
X4y? + x2y? — 3x2y% + 1 > 0 is SOS if You multiply is by x> + y? + 1.
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SOS decomposition

Problem
How to find such sum of squares (SOS) decomposition?

By evaluating
pn pu pu| (1
FY) = (LXY) | pn P2 Pl |x
P31 P P | \Y

we can obtain any polynomial of degree 2 in x and y with coefficients linear
functions of pj;.

For f to be a SOS we just need (p;) = P to be semi-positive definite,

since then P = Q"Q and (for (1,x,y)™ = X)

f=XPR=xQ" - Qk=(Q%)" - (QX).
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Mathematical Programming

Linear programming:

» optimise linear functional

> on the set constrained by hyperplanes (polytope)
Semi-definite programming

» optimise linear functional

» on a polytope intersected with the cone of SPD matrices
(spectrahedron)

» weak duality, non-unique solutions

» even feasibility is a hard problem!
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SDP problem formulation

variables: a, bq, b, C, A.

Example (SDP problem)
maximise: A

. c b,
subject to: =0
b1 a

c=1-A
by +b, =4

a=

tries to maximise A as long as (2x?> + 4x+1) — A > 0.
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NC-Positivstellensatz

> 3?R[G] = {; & &: £ € R[G]}

> £>0 <= (&) > 0in every k-representation of R[G]

Theorem (Schmiidgen)
For any x-invariant element & € R[G]

E>0 = &+ eueX’R[G]
for all € > 0, where u is an interior point of 32R[G].

Example
1is an interior point of 32R[G], i.e. to show that A> — AA > 0 it's enough to
answer

Is A2 —AA + & € 32R[G] forall €?

This of no use for us: SOS decompositions A2 — AA + € = > E¥E may be
very diffrent for different «.
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NC-Positivstellensatz

Proposition (Ozawa, 2015)
Ais an interior point of 32I[G] = I[G] N 3?R[G], i.e.
for a *x-invariant element € € I[G]

E>0 = &+eAeG]
forall e > 0.

Example
If we can show that A2 — AA + A = > & for a single fixed &, then

A2—(A-g)A+eA=>EE+e> (1-9)*(1-g) € 32[G]

for all € simultanuously!
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Action Plan

1. Pick G = (S|R);
2. SetX = (e,91,02,..-,9n), i €By(e,S) (d=2,3,...);
3. Solve the problem (numerically):

maximize: A
subjectto: P >0, Pe Mg
A=0

(A2 = AA)¢ = > Pgp, forallt € Byl(e,S)
g h=t

4. Compute P =Q = [Ge,---,qg, ]
5. Finally: & = (X, gy) and A2 — AA = Y3 & &,



How do we certify that the numerical result is sound?



Certifying correctness

Lemma (Netzer&Thom)
Let r € I[G] C R[G] such that supp(r) C Bg(e). Then

r+2%"rl - A € 32I[G].
Corollary
If A2 = AA = 3 & & + 1, then
A= (A=2irlh) A = D EFE + (r+29IrlhA) € S7I[6),

i.e. A has spectral gap of at least A — 2¢7||r|l,.
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Action Plan 2

1. Pick G = (S|R);
2. SetX=(e,g1,92,...,9n), gi € Bg(e,S) (d=2,3,...);
3. Solve the problem (numerically):

maximize: A
subjectto: P»0, Pe Mg
A>0
(A2 — AA) = (XPXT),, forallt e Byle,S)

4. Compute Q = [Ge, ..., qqgn ] ~ /P
P— P — P — VP — Qe Mg(RIF)
5. Setting & = (X, gg) we have
A2 —AA = > EFE +r, whererel[Gland Irl; <&
6. Finally A2 — (A =297 "e)A = S &*E + (r + 2% '¢A) = 0, hence
A(G,S) = (A —297"¢) s certified.



CONCRETE EXAMPLES




Reconstructed /P

———
s e =T
~ 5 - P L S N
e - g s 4 e e o
= .

VP = Q € My, where X = B,(e, E(3)), i.e. rows and columns are indexed by
elements in (SL(3,7),E(3)) of word length < 2. In this case
121

A?—028A = EE+r,  |rls €[3.8508,3.8511] - 10~

i=1



G n m A i1 < by < K uby

SL(3,Z) 390,287 935,021 0.5405 52-10"7  0.19 0.30014 | 0.81650
SL(4,7) 93,962 263,122 13150 5.2-107% 0.00106 | 0.33103 0.70711
SL(5,7) 628,882 1,757,466 2.6500 2.0-10"* 0.00105 | 0.36400 | 0.63246




SAut(Fs)

G n m A lrily <

SAut(F,) 3,157,730 1,777,542 0.0100 7.4

(after weeks of computation)
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G n m

SAut(Fs) 21,538,881 11,154,301

Find a finite group K < Aut(SAut(F,)) which keeps the generating set S
and (thus) A2 — AA invariant (K = Z, 1 Ss);

The optimisation problem for A has a K-invariant solution
Decompose Byg(e,S) into orbits of K (7229 of them)
Decompose By (e,S) into irreducible representations of K

Using minimal projection system for K reduce the size of the
optimisation problem ( 29 semidefinite constraints, 13233 variables)

Solve the smaller problem and reconstruct the solution P of the larger
one.






SAut(Fs)

G n m A Irll4 < <K

SAut(Fs) 13,233 7,230 13000 2.1-10°° ‘ 0.18028 ‘
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[...] certain things first became clear to me by a mechan-
ical method, although they had to be proved by geom-
etry afterwards [...] But it is of course easier, when we
have previously acquired, by the method, some knowl-
edge of the questions, to supply the proof than it is to
find it without any previous knowledge.



[...] certain things first became clear to me by a mechan-
ical method, although they had to be proved by geom-
etry afterwards [...] But it is of course easier, when we
have previously acquired, by the method, some knowl-
edge of the questions, to supply the proof than it is to
find it without any previous knowledge.

(The Method of Mechanical Theorems, Archimedes)
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