How asymmetric are asymmetric manifolds?

Marek Kaluba June 22, 2016

Adam Mickiewicz University, Poznań Mathematical Institute of Polish Academy of Sciences, Warsaw

[Asymmetric manifolds](#page-1-0)

Definition

A manifold is said to be **asymmetric** if it does not admit any non-trivial action of a finite group.

Definition

A manifold is said to be **asymmetric** if it does not admit any non-trivial action of a finite group.

There might be manifolds smoothly asymmetric which are not topologically asymmetric.

Theorem ((Borel, 1969?), Conner&Raymond, 1971)

Let G denote a finite subgroup of homeomorphisms of a closed, connected, aspherical manifold M. Consider the homomorphism

 $j: G \rightarrow Out(\pi_1(M))$

which sends $f \in G$ < **Homeo**(*M*) *to the outer automorphism of* π_1 (*M*) *induced by the homeomorphism* f *. If* $\pi_1(M)$ *has trivial center, then j is a monomorphism.*

Theorem (Conner, Raymond and Weinberger, 1971)

Mapping toruses M^f of certain maps f : *T ⁿ* → *T ⁿ are closed aspherical manifolds such that*

 $\pi_1(M_f)$ *has trivial center,*

Theorem (Conner, Raymond and Weinberger, 1971)

Mapping toruses M^f of certain maps f : *T ⁿ* → *T ⁿ are closed aspherical manifolds such that*

> $\pi_1(M_f)$ *has trivial center,* $Out(\pi_1(M_f)) \cong \mathbb{Z}/2$

for n = 6*,* 10*,* 15*,* 21*,* 28*,* 36*, hence these are almost asymmetric manifolds (only* Z*/*² *can possibly act effectively).*

Theorem (Conner, Raymond and Weinberger, 1971)

Mapping toruses M^f of certain maps f : *T ⁿ* → *T ⁿ are closed aspherical manifolds such that*

> $\pi_1(M_f)$ *has trivial center,* $Out(\pi_1(M_f)) \cong \mathbb{Z}/2$

for n = 6*,* 10*,* 15*,* 21*,* 28*,* 36*, hence these are almost asymmetric manifolds (only* Z*/*² *can possibly act effectively).*

Theorem (Raymond, Tollefson, 1976)

There exists aspherical 3*-manifold M with the outer automorphisms group of π*1 *is torsion free. (i.e.* Homeo*(M) contain no finite subgroup).*

[from 1976 list of open problems collected by Browder & Hsiang]

It is generally felt that a manifold chosen at random will have very little symmetry. Can this intuitive notion be made more precise? In connection with this feeling we have the following specific question. [from 1976 list of open problems collected by Browder & Hsiang]

It is generally felt that a manifold chosen at random will have very little symmetry. Can this intuitive notion be made more precise? In connection with this feeling we have the following specific question.

Question (Raymond & Schultz, 1976)

Does there exist a closed simply connected manifold on which no finite group act effectively? (A weaker question, no involution?)

[repeated in 2002 by Adem & Davis]

Theorem (Malfait, 1998)

Borel conditions are also necessary for e.g. flat Riemannian manifolds, infra-nilmanifolds and infra-solvmanifolds of type (R).

The simply connected case

• *There exist an infinite family of simply connected,* 6*-dimensional smooth manifolds which do not admit any effective (even topological) action of any compact Lie group, with possible exception of orientation reversing involutions. (Puppe, 1995)*

- *There exist an infinite family of simply connected,* 6*-dimensional smooth manifolds which do not admit any effective (even topological) action of any compact Lie group, with possible exception of orientation reversing involutions. (Puppe, 1995)*
- *Each of the manifolds above turns out to be a conjugation space i.e. admits an involution halving degrees in cohomology (Olbermann, 2011)*

- *There exist an infinite family of simply connected,* 6*-dimensional smooth manifolds which do not admit any effective (even topological) action of any compact Lie group, with possible exception of orientation reversing involutions. (Puppe, 1995)*
- *Each of the manifolds above turns out to be a conjugation space i.e. admits an involution halving degrees in cohomology (Olbermann, 2011)*
- *But if we are satisfied with just topological manifolds and actions with equivariant tubular neighbourhoods, then there exists a similar family of non-smoothable ones which admit no involutions at all (Kreck, 2011)*

- *There exist an infinite family of simply connected,* 6*-dimensional smooth manifolds which do not admit any effective (even topological) action of any compact Lie group, with possible exception of orientation reversing involutions. (Puppe, 1995)*
- *Each of the manifolds above turns out to be a conjugation space i.e. admits an involution halving degrees in cohomology (Olbermann, 2011)*
- *But if we are satisfied with just topological manifolds and actions with equivariant tubular neighbourhoods, then there exists a similar family of non-smoothable ones which admit no involutions at all (Kreck, 2011)*

The existence of smooth simply connected manifolds with no finite symmetries is still an open problem.

Cohomology and asymmetry

Theorem (Puppe, 1995)

*(*char *k* = *p) Let M be a compact manifold such that*

- *H* [∗]*(M*; *k) has no non-trivial automorphism of order p,*
- *H* [∗]*(M*; *k) has no non-trivial derivation of negative degree,*
- *H* [∗]*(M*; *k) has no non-trivial deformation of negative weight, and*
- *H* [∗]*(M*; *k) has minimal formal dimension.*

Theorem (Puppe, 1995)

*(*char *k* = *p) Let M be a compact manifold such that*

- *H* [∗]*(M*; *k) has no non-trivial automorphism of order p,*
- *H* [∗]*(M*; *k) has no non-trivial derivation of negative degree,*
- *H* [∗]*(M*; *k) has no non-trivial deformation of negative weight, and*
- *H* [∗]*(M*; *k) has minimal formal dimension.*

Then M does not admit any non-trivial action of \mathbb{Z}/p (in the case $p = 2$: *orientation preserving action).*

Theorem (Wall, 1966)

The diffeomorphism classes of elements of 6*-dimensional, spin manifolds with torsion free cohomology generated in* 2*-nd degree correspond bijectively to isomorphism classes of (H, µ, p*1*):*

- 1. *a free* Z*-module H of finite rank, corresponding to H* 2 *(M*; Z*),*
- 2. *a trilinear, symmetric form* μ *:* $H \times H \times H \rightarrow \mathbb{Z}$, corresponding to the cup *product in H* [∗]*(M*; Z*),*
- 3. *a linear map* $p_1 \in \text{hom}(H, \mathbb{Z})$, corresponding to the dual of the first *Pontrjagin class,*

subject to the following conditions:

(a)
$$
\mu(x, x, y) \equiv \mu(x, y, y)
$$
 (mod 2) for $x, y \in H$,

(b)
$$
p_1(x) \equiv 4\mu(x, x, x)
$$
 (mod 24) for $x \in H$.

Set
$$
H = \mathbb{Z}^6
$$
 and $f: H \to \mathbb{Z}$,
\n
$$
f(x_1, ..., x_6) = 6\left(x_1x_4^2 - x_1^2x_4 + x_2x_4^2 + x_2x_4^2 - x_2^2x_5 + x_2x_5^2 + x_3^2x_4 - x_3x_4^2 + x_3^2x_6 + x_3x_6^2 + x_5^2x_6 + x_5x_6^2 + x_4x_2x_4 + x_1x_2x_5 + x_1x_3x_6 + x_2x_4x_6 + x_3x_5x_6 + x_4x_5x_6 + x_4x_5x_6 + x_4^3 + x_6^3\right).
$$

Then symmetric-trilinearisation of *f* provides a family M*As* of almost asymmetric manifolds.

[Product Actions](#page-22-0)

An action of *G* on *M* × *N* is called a **product action** if it is equivalent (i.e. is conjugated by a homeomorphism) with one decomposable in the following manner.

An action of *G* on *M* × *N* is called a **product action** if it is equivalent (i.e. is conjugated by a homeomorphism) with one decomposable in the following manner.

$$
G \times (M \times N) \longrightarrow M \times N
$$

(g, (x, y))
$$
\longrightarrow \begin{bmatrix} \varphi(g) & 0 \\ 0 & \psi(g) \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = [\varphi(g)x, \psi(g)y]
$$

Where *ϕ* and *ψ* denote actions of *G* on maifolds *M*, *N* respectively.

Given a product of manifolds $M \times N$ what are possible actions on the space?

Given a product of manifolds $M \times N$ what are possible actions on the space?

When there are plenty of actions on both *M* and *N*, we tend to believe that some of them might be interweaved to create a non-product one.

Given a product of manifolds $M \times N$ what are possible actions on the space?

When there are plenty of actions on both *M* and *N*, we tend to believe that some of them might be interweaved to create a non-product one.

Choose *M* with as few symmetries as possible – an asymmetric one. The most symmetric choice for *N* is a sphere.

What is the minimal *n* (depending on *M* and *G*) such that there exist a non-product action of *G* on *M* ×*S n* ?

Outline

In this talk the we will focus on cases: $M \times S^1$ and $M \times S^2$, $G = S^1$ or $G = \mathbb{Z}/p$.

Outline

In this talk the we will focus on cases: $M \times S^1$ and $M \times S^2$, $G = S^1$ or $G = \mathbb{Z}/p$.

\blacksquare **1. Construct exotic actions on** $M \times S^2$ \blacksquare 2. Prove that free S^1 -actions on $\mathsf{M}^6 \times S^1$ are standard $\,$ 3. Towards classification of free actions on $M^6 \times S^1$

Outline

In this talk the we will focus on cases: $M \times S^1$ and $M \times S^2$, $G = S^1$ or $G = \mathbb{Z}/p$.

 \blacksquare **1. Construct exotic actions on** $M \times S^2$ \blacksquare 2. Prove that free S^1 -actions on $\mathsf{M}^6 \times S^1$ are standard $\,$ 3. Towards classification of free actions on $M^6 \times S^1$

joint work with **Zbigniew Błaszczyk**

[Actions on](#page-33-0) *M* × *S* ² **are exotic**

General assumptions:

- \cdot $G \cong \mathbb{Z}/p$, a finite cyclic group or $G \cong S^1$;
- *M* be a *m*-dimensional asymmetric manifold (not necessarily simply-connected).

General assumptions:

- \cdot $G \cong \mathbb{Z}/p$, a finite cyclic group or $G \cong S^1$;
- *M* be a *m*-dimensional asymmetric manifold (not necessarily simply-connected).

Proposition

There exist effective, non-product actions of G on $M \times S^2$.

If *M* is smooth, then the action can be arranged to be smooth as well.
Let *X* be a contractible, $(m + 1)$ -dimensional $(m \ge 3)$ manifold with smooth boundary *[∂]^X* ⁼ ^Σ (^Σ is necessarily a ^Z-homology sphere). Then there exist effective, smooth *G*-action on sphere *S ^m*+² with the fixed-point set diffeomorphic to ^Σ.

Let *X* be a contractible, $(m + 1)$ -dimensional $(m \ge 3)$ manifold with smooth boundary *[∂]^X* ⁼ ^Σ (^Σ is necessarily a ^Z-homology sphere). Then there exist effective, smooth *G*-action on sphere *S ^m*+² with the fixed-point set diffeomorphic to $Σ$.

Construction:

• Consider product *G*-action on *X* ×*D(V)*, where *V* is any complex, 1-dimensional representation of *G*;

Let *X* be a contractible, $(m + 1)$ -dimensional $(m \ge 3)$ manifold with smooth boundary *[∂]^X* ⁼ ^Σ (^Σ is necessarily a ^Z-homology sphere). Then there exist effective, smooth *G*-action on sphere *S ^m*+² with the fixed-point set diffeomorphic to $Σ$.

Construction:

- Consider product *G*-action on *X* ×*D(V)*, where *V* is any complex, 1-dimensional representation of *G*;
- \cdot By *h*-cobordism $X \times D(V) \cong D^{m+3}$;

Let *X* be a contractible, $(m + 1)$ -dimensional $(m \geq 3)$ manifold with smooth boundary *[∂]^X* ⁼ ^Σ (^Σ is necessarily a ^Z-homology sphere). Then there exist effective, smooth *G*-action on sphere *S ^m*+² with the fixed-point set diffeomorphic to $Σ$.

Construction:

- Consider product *G*-action on *X* ×*D(V)*, where *V* is any complex, 1-dimensional representation of *G*;
- \cdot By *h*-cobordism $X \times D(V) \cong D^{m+3}$;
- The action restricted to the boundary is the desired one.

Г

There exist effective, non-product actions of G on $M^m \times S^2$.

There exist effective, non-product actions of G on $M^m \times S^2$.

Proof.

• Choose a *^m*-dimensional (*^m* [≥] ³) homology sphere ^Σ bounding a contractible manifold *X*.

There exist effective, non-product actions of G on $M^m \times S^2$.

Proof.

- Choose a *^m*-dimensional (*^m* [≥] ³) homology sphere ^Σ bounding a contractible manifold *X*.
- There exists a smooth action of *G* on *S ^m*+² with the fixed point set diffeomorphic to ^Σ and tangential *^G*-module at ^Σ isomorphic to *^V* [⊕] *^m***1***G*.

There exist effective, non-product actions of G on $M^m \times S^2$.

Proof.

- Choose a *^m*-dimensional (*^m* [≥] ³) homology sphere ^Σ bounding a contractible manifold *X*.
- There exists a smooth action of *G* on *S ^m*+² with the fixed point set diffeomorphic to ^Σ and tangential *^G*-module at ^Σ isomorphic to *^V* [⊕] *^m***1***G*.
- Form a *G*-connected sum

$$
M\times S(V\oplus \mathbb{R})\#S^{m+2}\cong M\times S^2.
$$

• None of these allows for two components

$M \sqcup M#Σ$

with non-isomorphic fundamental groups.

 \Box

• None of these allows for two components

M L M#Σ

with non-isomorphic fundamental groups.

Proposition

There exist exotic orientation preserving involutions on $M \times S^1$ for any asymmetric *M* of dimension $m \geq 4$.

 \Box

Free S¹-actions on $M^6 \times S^1$ [are standard](#page-47-0)

Let M^6 be one of the smooth asymmetric manifolds described by Puppe. In particular *M*⁶ is simply connected, spin manifold with torsion-free cohomology generated in the second dimension.

Let M^6 be one of the smooth asymmetric manifolds described by Puppe. In particular *M*⁶ is simply connected, spin manifold with torsion-free cohomology generated in the second dimension.

Theorem

All orientation preserving, free S 1 *-actions on M*⁶ × *S* ¹ *are equivalent to the product actions.*

Let M^6 be one of the smooth asymmetric manifolds described by Puppe. In particular *M*⁶ is simply connected, spin manifold with torsion-free cohomology generated in the second dimension.

Theorem

All orientation preserving, free S 1 *-actions on M*⁶ × *S* ¹ *are equivalent to the product actions.*

We strongly believe that the following is also true:

Conjecture

All free $\mathbb{Z}/_p$ -actions on $M^6 \times S^1$ are equivalent to a product action ($p \neq 2$).

All *S* 1 -bundles are determined by their first Chern class

 $c_1(\xi) = c(\xi)^*(x)$,

where **x** is the generator of $H^2(BS^1, \mathbb{Z})$.

All *S* 1 -bundles are determined by their first Chern class

 $c_1(\xi) = c(\xi)^*(x)$,

where **x** is the generator of $H^2(BS^1, \mathbb{Z})$.

Our aim is to prove that $c_1(\xi)$ vanishes, so that we have a trivial bundle

$$
\left(S^1\to X\times S^1\to X\right).
$$

All *S* 1 -bundles are determined by their first Chern class

 $c_1(\xi) = c(\xi)^*(x)$,

where **x** is the generator of $H^2(BS^1, \mathbb{Z})$.

Our aim is to prove that $c_1(\xi)$ vanishes, so that we have a trivial bundle

$$
\left(S^1\to X\times S^1\to X\right)\,.
$$

Assume so for now.

Then we have a commuting diagram:

Then we have a commuting diagram:

So we know that over (a manifold) *X* the trivial *S* 1 -bundle satisfies

 $M \times S^1 \simeq X \times S^1$.

Observe that this gives us just a homotopy equivalence

 $M \xrightarrow{\cong} X$

which we would like to improve to diffeomorphism.

Observe that this gives us just a homotopy equivalence

 $M \xrightarrow{\cong} X$

which we would like to improve to diffeomorphism.

• We already have $M \times S^1 \cong X \times S^1$. Lift it to

 $\varphi: M \times \mathbb{R} \to X \times \mathbb{R}$.

• Image of *ϕ M* × {0} belongs to *X* × *(*−*a, a)* for some *a >* 0. Set *A* for the connected component of $(X \times \mathbb{R}) - \varphi(M \times \{0\})$ such that

$$
W = A \cap (X \times (-\infty, a])
$$

is non empty.

 \cdot *W* is an *h*-cobordism between *X* and φ (*M*) which yields a diffeomorphism *M* → *X*.

 \Box

The triviality of the first Chern class.

The triviality of the first Chern class.

Proof of this fact relays on:

Fact: Multiplication by $c_1(\xi)$ can be identified with a differential on the first non-trivial page of the Leray-Serre spectral sequence of the fibration.

Recall that *M* is 6-dimensional, simply connected manifold with cohomology

 $H^*(M) = \text{Free}(H^*(M)) = H^{\text{even}}(M)$

generated in dimension 2.

Recall that *M* is 6-dimensional, simply connected manifold with cohomology

 $H^*(M) = \text{Free}(H^*(M)) = H^{\text{even}}(M)$

generated in dimension 2.

By the long exact sequence of fibration, $\pi_1(X)$ is either trivial or finite cyclic.

Recall that *M* is 6-dimensional, simply connected manifold with cohomology

 $H^*(M) = \text{Free}(H^*(M)) = H^{\text{even}}(M)$

generated in dimension 2.

By the long exact sequence of fibration, $\pi_1(X)$ is either trivial or finite cyclic.

If S^1 acts preserving orientation, $\pi_1(X)$ acts trivially on $H^*(S^1)$ and we have Serre spectral sequence

$$
E_2^{p,q}=H^p\big(X,H^q(S^1;\mathbb{Z})\big)\Rightarrow H^{p+q}(M\times S^1;\mathbb{Z})
$$

with untwisted coefficients.

•
$$
d_2: E_2^{0,1} \rightarrow E_2^{2,0}
$$
 is multiplication by $c_1(\xi)$

- \cdot d_2 : $E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/k$ is a generator.

 $^{2}(X)) =$ $H_1(X) = \mathbb{Z}/k$

- \cdot d_2 : $E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/k$ is a generator.

$$
\begin{array}{l}c\in \text{Tor}(H^2(X))=\\ H_1(X)=\mathbb{Z}/_k\end{array}
$$

- \cdot d_2 : $E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/k$ is a generator.

$$
\begin{array}{l}c\in \text{Tor}(H^2(X))=\\ H_1(X)=\mathbb{Z}/_k\end{array}
$$

- \cdot d_2 : $E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/k$ is a generator.

$$
\begin{array}{l}c\in \text{Tor}(H^2(X))=\\ H_1(X)=\mathbb{Z}/_k\end{array}
$$

- \cdot d_2 : $E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/k$ is a generator.

$$
\begin{array}{l}c\in \text{Tor}(H^2(X))=\\ H_1(X)=\mathbb{Z}/_k\end{array}
$$

- \cdot d_2 : $E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/k$ is a generator.

$$
\begin{array}{l}c\in \text{Tor}(H^2(X))=\\ H_1(X)=\mathbb{Z}/_k\end{array}
$$

• Since $d_2(c \otimes a) = c^2$, push $c \leadsto c^3 \otimes a \in E_2^{6,1}$.

- \cdot d_2 : $E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/k$ is a generator.
- Since $d_2(c \otimes a) = c^2$, push $c \leadsto c^3 \otimes a \in E_2^{6,1}$.
- \cdot $c^3 \otimes a$ survives to E_{∞} and hence to $H^7(M \times S^1)$.

 $^{2}(X)) =$ $H_1(X) = \mathbb{Z}/k$

- \cdot d_2 : $E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/k$ is a generator.
- Since $d_2(c \otimes a) = c^2$, push $c \leadsto c^3 \otimes a \in E_2^{6,1}$.
- \cdot $c^3 \otimes a$ survives to E_{∞} and hence to $H^7(M \times S^1)$.
- But $H^7(M \times S^1) = \mathbb{Z}$, so $d_2(c^2 \otimes a) = c^3 = 0$.

 $^{2}(X)) =$ $H_1(X) = \mathbb{Z}/k$

- \cdot d_2 : $E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/k$ is a generator.
- Since $d_2(c \otimes a) = c^2$, push $c \leadsto c^3 \otimes a \in E_2^{6,1}$.
- \cdot $c^3 \otimes a$ survives to E_{∞} and hence to $H^7(M \times S^1)$.
- But $H^7(M \times S^1) = \mathbb{Z}$, so $d_2(c^2 \otimes a) = c^3 = 0$.
- Now *c* ² ⊗ *a* survives to *E*∞, so we have an extension

 $^{2}(X)) =$ $H_1(X) = \mathbb{Z}/k$

This proves simultaneously that

- \cdot $c_1(\xi)$ is trivial
- Tor $(H^2(X)) = H_1(X) = \pi_1(X)$ is trivial.

This proves simultaneously that

- \cdot $c_1(\xi)$ is trivial
- Tor $(H^2(X)) = H_1(X) = \pi_1(X)$ is trivial.

It also suggests, that the fact is more general and it holds for all manifolds with torsion-free cohomology in even degrees.

[Free actions on](#page-78-0) $M \times S^1$

Theorem

Free Z*/p-actions on M*⁶ × *S* ¹ *are smoothly/topologically conjugated if and only if their orbit spaces are homeo-/diffeomorphic (p prime).*

Theorem

Free Z*/p-actions on M*⁶ × *S* ¹ *are smoothly/topologically conjugated if and only if their orbit spaces are homeo-/diffeomorphic (p prime).*

Proof: (for $p = 2$)

Let τ_1 , τ_2 be two involutions on $M \times S^1$. Suppose

$$
f\colon\thinspace (M\times S^1,q_1)/\tau_1\to (M\times S^1,q_2)/\tau_2
$$

is a homeomorphism.

The lift *F* of *f* exists if and only if

 $f_* \circ (p_1)_*(\pi_1) \subset (p_2)_*(\pi_1).$

The lift *F* of *f* exists if and only if

$$
f_* \circ (p_1)_*(\pi_1) \subset (p_2)_*(\pi_1).
$$

This is always the case if e.g. $\pi_1((M \times S^1)/\tau_i) \cong \mathbb{Z}$.

Then $\tau_2 \circ F$ and $F \circ \tau_1$ are lifts of *f*, both distinct from *F*.

Then *τ*² ◦ *F* and *F* ◦ *τ*¹ are lifts of *f*, both distinct from *F*. Since there are only two such lifts

$$
\tau_2 = F \circ \tau_1 \circ F^{-1}
$$

which ends the proof.

Then *τ*² ◦ *F* and *F* ◦ *τ*¹ are lifts of *f*, both distinct from *F*. Since there are only two such lifts

$$
\tau_2 = F \circ \tau_1 \circ F^{-1}
$$

which ends the proof.

Lemma

Suppose that a finite group acts freely on $M \times S^1$ *, Then* $\pi_1((M \times S^1)/G) \cong \mathbb{Z}$ *.*

Proof.

 \cdot Let *G* act freely on $M \times S^1$, and set $\pi = \pi_1 ((M \times S^1)/G)$. Then

$$
0\to\mathbb{Z}\to\pi\to G\to 0.
$$

Proof.

 \cdot Let *G* act freely on $M \times S^1$, and set $\pi = \pi_1 ((M \times S^1)/G)$. Then

$$
0\,\to\, \mathbb{Z}\,\to\, \pi\,\to\, G\,\to\, 0.
$$

 \cdot $(M \times S^1)/G$ is still universally covered by $M \times \mathbb{R}$, therefore π acts (as deck transformations) on $M \times \mathbb{R}$.

Proof.

 \cdot Let *G* act freely on $M \times S^1$, and set $\pi = \pi_1 ((M \times S^1)/G)$. Then

$$
0\,\to\, \mathbb{Z}\,\to\, \pi\,\to\, G\,\to\, 0.
$$

- \cdot $(M \times S^1)/G$ is still universally covered by $M \times \mathbb{R}$, therefore π acts (as deck transformations) on $M \times \mathbb{R}$.
- Yet we claim that no finite group acts freely on $M \times \mathbb{R}$, thus $\pi \cong \mathbb{Z}$.

Claim

Claim

No finite group acts freely on $M \times \mathbb{R}$.

Proof. Consider the fibration $M \times \mathbb{R} \to (M \times \mathbb{R})/\mathbb{Z}/p \to K(\mathbb{Z}/p, 1)$ and its associated Serre spectral sequence

$$
E_2^{s,t} \cong H^s\Big(K(\mathbb{Z}/p,1); \mathcal{H}^t(M\times\mathbb{R};\mathbb{Z})\Big) \Longrightarrow H^{s+t}\left((M\times\mathbb{R})\left/\mathbb{Z}/_p;\mathbb{Z}\right.\right).
$$

Claim

Claim

No finite group acts freely on $M \times \mathbb{R}$.

Proof. Consider the fibration $M \times \mathbb{R} \to (M \times \mathbb{R})/\mathbb{Z}/p \to K(\mathbb{Z}/p, 1)$ and its associated Serre spectral sequence

$$
E_2^{s,t} \cong H^s\Bigl(K({\mathbb Z}/\!rho,1); \mathcal{H}^t(M\times {\mathbb R};{\mathbb Z})\Bigr) \Longrightarrow H^{s+t}\left((M\times {\mathbb R})\left/{\mathbb Z}/\!p;{\mathbb Z}\right).
$$

o. preserving Draw the E_2 -page and watch it collapse, leaving cohomological dimension of $(M \times \mathbb{R})/\mathbb{Z}/p$ infinite;

Claim

Claim

No finite group acts freely on $M \times \mathbb{R}$.

Proof. Consider the fibration $M \times \mathbb{R} \to (M \times \mathbb{R})/\mathbb{Z}/p \to K(\mathbb{Z}/p, 1)$ and its associated Serre spectral sequence

$$
E_2^{s,t} \cong H^s\Bigl(K({\mathbb Z}/\!rho,1); \mathcal{H}^t(M\times {\mathbb R};{\mathbb Z})\Bigr) \Longrightarrow H^{s+t}\left((M\times {\mathbb R})\left/{\mathbb Z}/\!p;{\mathbb Z}\right).
$$

o. preserving Draw the E_2 -page and watch it collapse, leaving cohomological dimension of $(M \times \mathbb{R})/\mathbb{Z}/p$ infinite;

o. reversing Draw the E_2 -page and take the plunge...

• The ring *H* [∗]*(M*; Z*)* admits a unique orientation reversing involution: $(+)$ on H^0 and H^4 , and $(−1)$ on H^2 and H^6 .

- The ring *H* [∗]*(M*; Z*)* admits a unique orientation reversing involution: $(+)$ on H^0 and H^4 , and $(−1)$ on H^2 and H^6 .
- \cdot This leads to the unique twisted coefficients system $\mathcal{H}^{t}(\sf{M}\times\mathbb{R};\mathbb{Z}).$
- The ring *H* [∗]*(M*; Z*)* admits a unique orientation reversing involution: $(+)$ on H^0 and H^4 , and $(−1)$ on H^2 and H^6 .
- \cdot This leads to the unique twisted coefficients system $\mathcal{H}^{t}(\sf{M}\times\mathbb{R};\mathbb{Z}).$
- ∙ Identify $E_2^{*,0}$ with $H^*(K(\mathbb{Z}/2,1);\mathbb{Z}) \cong \mathbb{Z}[a]/2a$ (deg *a* = 2).
- The ring *H* [∗]*(M*; Z*)* admits a unique orientation reversing involution: $(+)$ on H^0 and H^4 , and $(−1)$ on H^2 and H^6 .
- \cdot This leads to the unique twisted coefficients system $\mathcal{H}^{t}(\sf{M}\times\mathbb{R};\mathbb{Z}).$
- ∙ Identify $E_2^{*,0}$ with $H^*(K(\mathbb{Z}/2,1);\mathbb{Z}) \cong \mathbb{Z}[a]/2a$ (deg *a* = 2).
- \cdot The $E_2^{*,0}$ -module strucutre on $E_2^{*,4}$ is given by

 $E_2^{*,4} \cong H^* (K(\mathbb{Z}/_2, 1); H^4(M; \mathbb{Z})) \cong \mathbb{Z}[a]/2a \otimes H^4(M; \mathbb{Z}).$

- The ring *H* [∗]*(M*; Z*)* admits a unique orientation reversing involution: $(+)$ on H^0 and H^4 , and $(−1)$ on H^2 and H^6 .
- \cdot This leads to the unique twisted coefficients system $\mathcal{H}^{t}(\sf{M}\times\mathbb{R};\mathbb{Z}).$
- ∙ Identify $E_2^{*,0}$ with $H^*(K(\mathbb{Z}/2,1);\mathbb{Z}) \cong \mathbb{Z}[a]/2a$ (deg *a* = 2).
- \cdot The $E_2^{*,0}$ -module strucutre on $E_2^{*,4}$ is given by

 $E_2^{*,4} \cong H^* (K(\mathbb{Z}/_2, 1); H^4(M; \mathbb{Z})) \cong \mathbb{Z}[a]/2a \otimes H^4(M; \mathbb{Z}).$

• it follows that

$$
E_2^{*,6} \cong H^*\left(K(\mathbb{Z}/_2, 1), \widetilde{\mathbb{Z}}\right) \cong \begin{cases} \mathbb{Z}/_2, & \text{for } * \text{ odd,} \\ 0, & \text{otherwise,} \end{cases}
$$

with the *E* ∗*,*0 -module structure given as *ax*²*i*−¹ = *x*²*i*+¹ for *x*²*i*−¹ the generator of $E_2^{2i-1,6}$. We will denote $x_1 = b$ and $x_{2i+1} = ba^{i}$

Awaits

Topological/smooth classification of the orbit spaces.

Question

Is it true that for $n < N$ all effective actions of G on $M \times S^n$ are product actions?

Question

Is it true that for $n < N$ all effective actions of G on $M \times S^n$ are product actions?

Problem

What are algebraic or geometric (computable!) invariants that will allow us to recognize a product action?

Question

Is it true that for $n < N$ all effective actions of G on $M \times S^n$ are product actions?

Problem

What are algebraic or geometric (computable!) invariants that will allow us to recognize a product action?

Problem

What are possible free actions $M \times S^1$, where M is asymmetric, aspherical manifold?

Thank You