How asymmetric are asymmetric manifolds?

Marek Kaluba June 22, 2016

Adam Mickiewicz University, Poznań Mathematical Institute of Polish Academy of Sciences, Warsaw

Asymmetric manifolds

Definition

A manifold is said to be **asymmetric** if it does not admit any non-trivial action of a finite group.

Definition

A manifold is said to be **asymmetric** if it does not admit any non-trivial action of a finite group.

There might be manifolds smoothly asymmetric which are not topologically asymmetric.

Theorem ((Borel, 1969?), Conner&Raymond, 1971)

Let **G** denote a finite subgroup of homeomorphisms of a closed, connected, aspherical manifold **M**. Consider the homomorphism

 $j: G \rightarrow \text{Out}(\pi_1(M))$

which sends $f \in G < \text{Homeo}(M)$ to the outer automorphism of $\pi_1(M)$ induced by the homeomorphism f. If $\pi_1(M)$ has trivial center, then j is a monomorphism.

Theorem (Conner, Raymond and Weinberger, 1971)

Mapping toruses M_f of certain maps $f: T^n \to T^n$ are closed aspherical manifolds such that

 $\pi_1(M_f)$ has trivial center,

Theorem (Conner, Raymond and Weinberger, 1971)

Mapping toruses M_f of certain maps $f: T^n \to T^n$ are closed aspherical manifolds such that

 $\pi_1(M_f)$ has trivial center, $\operatorname{Out}\left(\pi_1(M_f)
ight)\cong \mathbb{Z}/_2$

for n = 6, 10, 15, 21, 28, 36, hence these are **almost asymmetric** manifolds (only \mathbb{Z}_{2} can possibly act effectively).

Theorem (Conner, Raymond and Weinberger, 1971)

Mapping toruses M_f of certain maps $f: T^n \to T^n$ are closed aspherical manifolds such that

 $\pi_1(M_f)$ has trivial center, $\operatorname{Out}\left(\pi_1(M_f)
ight)\cong \mathbb{Z}/_2$

for n = 6, 10, 15, 21, 28, 36, hence these are **almost asymmetric** manifolds (only \mathbb{Z}_{2} can possibly act effectively).

Theorem (Raymond, Tollefson, 1976)

There exists aspherical 3-manifold M with the outer automorphisms group of π_1 is torsion free. (i.e. Homeo(M) contain no finite subgroup).

[from 1976 list of open problems collected by Browder & Hsiang]

It is generally felt that a manifold chosen at random will have very little symmetry. Can this intuitive notion be made more precise? In connection with this feeling we have the following specific question. [from 1976 list of open problems collected by Browder & Hsiang]

It is generally felt that a manifold chosen at random will have very little symmetry. Can this intuitive notion be made more precise? In connection with this feeling we have the following specific question.

Question (Raymond & Schultz, 1976)

Does there exist a closed simply connected manifold on which no finite group act effectively? (A weaker question, no involution?)

[repeated in 2002 by Adem & Davis]

Theorem (Malfait, 1998)

Borel conditions are also necessary for e.g. flat Riemannian manifolds, infra-nilmanifolds and infra-solvmanifolds of type (R).

The simply connected case

• There exist an infinite family of simply connected, 6-dimensional smooth manifolds which do not admit any effective (even topological) action of any compact Lie group, with possible **exception** of orientation reversing involutions. (Puppe, 1995)

- There exist an infinite family of simply connected, 6-dimensional smooth manifolds which do not admit any effective (even topological) action of any compact Lie group, with possible **exception** of orientation reversing involutions. (Puppe, 1995)
- Each of the manifolds above turns out to be a conjugation space i.e. admits an involution halving degrees in cohomology (Olbermann, 2011)

- There exist an infinite family of simply connected, 6-dimensional smooth manifolds which do not admit any effective (even topological) action of any compact Lie group, with possible **exception** of orientation reversing involutions. (Puppe, 1995)
- Each of the manifolds above turns out to be a conjugation space i.e. admits an involution halving degrees in cohomology (Olbermann, 2011)
- But if we are satisfied with just **topological manifolds** and actions with equivariant tubular neighbourhoods, then there exists a similar family of non-smoothable ones which admit no involutions at all (Kreck, 2011)

- There exist an infinite family of simply connected, 6-dimensional smooth manifolds which do not admit any effective (even topological) action of any compact Lie group, with possible **exception** of orientation reversing involutions. (Puppe, 1995)
- Each of the manifolds above turns out to be a conjugation space i.e. admits an involution halving degrees in cohomology (Olbermann, 2011)
- But if we are satisfied with just **topological manifolds** and actions with equivariant tubular neighbourhoods, then there exists a similar family of non-smoothable ones which admit no involutions at all (Kreck, 2011)

The existence of smooth simply connected manifolds with no finite symmetries is still an open problem.

Cohomology and asymmetry

Theorem (Puppe, 1995)

 $(\operatorname{char} k = p)$ Let M be a compact manifold such that

- $H^*(M; k)$ has no non-trivial automorphism of order p,
- H* (M; k) has no non-trivial derivation of negative degree,
- $H^*(M; \mathbf{k})$ has no non-trivial deformation of negative weight, and
- H*(M; k) has minimal formal dimension.

Theorem (Puppe, 1995)

 $(\operatorname{char} k = p)$ Let M be a compact manifold such that

- H*(M; k) has no non-trivial automorphism of order p,
- H* (M; k) has no non-trivial derivation of negative degree,
- $H^*(M; \mathbf{k})$ has no non-trivial deformation of negative weight, and
- H*(M; k) has minimal formal dimension.

Then **M** does not admit any non-trivial action of \mathbb{Z}_p (in the case p = 2: orientation preserving action).

Theorem (Wall, 1966)

The diffeomorphism classes of elements of 6-dimensional, spin manifolds with torsion free cohomology generated in 2-nd degree correspond bijectively to isomorphism classes of (H, μ, p_1) :

- 1. a free \mathbb{Z} -module H of finite rank, corresponding to $H^2(M; \mathbb{Z})$,
- a trilinear, symmetric form µ: H × H × H → Z, corresponding to the cup product in H* (M; Z),
- 3. a linear map $p_1 \in hom(H, \mathbb{Z})$, corresponding to the dual of the first Pontrjagin class,

subject to the following conditions:

(a)
$$\mu(x, x, y) \equiv \mu(x, y, y) \pmod{2}$$
 for $x, y \in H$,

(b)
$$p_1(x) \equiv 4\mu(x, x, x) \pmod{24}$$
 for $x \in H$.

Set
$$H = \mathbb{Z}^6$$
 and $f: H \to \mathbb{Z}$,

$$\begin{aligned} f(x_1, ..., x_6) &= 6 \Big(x_1 x_4^2 - x_1^2 x_4 + x_2 x_4^2 + x_2 x_4^2 - x_2^2 x_5 + x_2 x_5^2 + x_3^2 x_4 - x_3 x_4^2 + x_3^2 x_6 + x_3 x_6^2 + x_5^2 x_6 + x_5 x_6^2 + x_1 x_2 x_4 + x_1 x_2 x_5 + x_1 x_3 x_6 + x_2 x_4 x_6 + x_3 x_5 x_6 + x_4 x_5 x_6 + x_4 x_5 x_6 + x_4^3 + x_6^3 \Big). \end{aligned}$$

Then symmetric-trilinearisation of f provides a family \mathcal{M}_{As} of almost asymmetric manifolds.

Product Actions

An action of *G* on $M \times N$ is called a **product action** if it is equivalent (i.e. is conjugated by a homeomorphism) with one decomposable in the following manner.

An action of *G* on $M \times N$ is called a **product action** if it is equivalent (i.e. is conjugated by a homeomorphism) with one decomposable in the following manner.

$$\begin{array}{c} G \times (M \times N) \longrightarrow M \times N \\ (g, (x, y)) \longmapsto \begin{bmatrix} \varphi(g) & 0 \\ 0 & \psi(g) \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = [\varphi(g)x, \psi(g)y]$$

Where φ and ψ denote actions of **G** on maifolds **M**, **N** respectively.

Given a product of manifolds $M \times N$ what are possible actions on the space?

Given a product of manifolds $M \times N$ what are possible actions on the space?

When there are plenty of actions on both *M* and *N*, we tend to believe that some of them might be interweaved to create a non-product one.

Given a product of manifolds $M \times N$ what are possible actions on the space?

When there are plenty of actions on both *M* and *N*, we tend to believe that some of them might be interweaved to create a non-product one.

Choose *M* with as few symmetries as possible – an asymmetric one. The most symmetric choice for *N* is a sphere.

What is the minimal n (depending on M and G) such that there exist a non-product action of G on $M \times S^n$?

Outline

In this talk the we will focus on cases: $M \times S^1$ and $M \times S^2$, $G = S^1$ or $G = \mathbb{Z}/_p$.

Outline

In this talk the we will focus on cases: $M \times S^1$ and $M \times S^2$, $G = S^1$ or $G = \mathbb{Z}/_p$.

Construct exotic actions on M × S²
 Prove that free S¹-actions on M⁶ × S¹ are standard
 Towards classification of free actions on M⁶ × S¹

Outline

In this talk the we will focus on cases: $M \times S^1$ and $M \times S^2$, $G = S^1$ or $G = \mathbb{Z}/_p$.

Construct exotic actions on M × S²
 Prove that free S¹-actions on M⁶ × S¹ are standard
 Towards classification of free actions on M⁶ × S¹

joint work with Zbigniew Błaszczyk

Actions on $M \times S^2$ are exotic

General assumptions:

- $G \cong \mathbb{Z}/_p$, a finite cyclic group or $G \cong S^1$;
- *M* be a *m*-dimensional asymmetric manifold (not necessarily simply-connected).

General assumptions:

- $G \cong \mathbb{Z}/_p$, a finite cyclic group or $G \cong S^1$;
- *M* be a *m*-dimensional asymmetric manifold (not necessarily simply-connected).

Proposition

There exist effective, non-product actions of G on $M \times S^2$.

If *M* is smooth, then the action can be arranged to be smooth as well.
Let X be a contractible, (m + 1)-dimensional $(m \ge 3)$ manifold with smooth boundary $\partial X = \Sigma$ (Σ is necessarily a \mathbb{Z} -homology sphere). Then there exist effective, smooth *G*-action on sphere S^{m+2} with the fixed-point set diffeomorphic to Σ .

Let X be a contractible, (m + 1)-dimensional $(m \ge 3)$ manifold with smooth boundary $\partial X = \Sigma$ (Σ is necessarily a \mathbb{Z} -homology sphere). Then there exist effective, smooth *G*-action on sphere S^{m+2} with the fixed-point set diffeomorphic to Σ .

Construction:

• Consider product *G*-action on $X \times D(V)$, where *V* is any complex, 1-dimensional representation of *G*;

Let X be a contractible, (m + 1)-dimensional $(m \ge 3)$ manifold with smooth boundary $\partial X = \Sigma$ (Σ is necessarily a \mathbb{Z} -homology sphere). Then there exist effective, smooth *G*-action on sphere S^{m+2} with the fixed-point set diffeomorphic to Σ .

Construction:

- Consider product *G*-action on $X \times D(V)$, where *V* is any complex, 1-dimensional representation of *G*;
- By *h*-cobordism $X \times D(V) \cong D^{m+3}$;

Let X be a contractible, (m + 1)-dimensional $(m \ge 3)$ manifold with smooth boundary $\partial X = \Sigma$ (Σ is necessarily a \mathbb{Z} -homology sphere). Then there exist effective, smooth *G*-action on sphere S^{m+2} with the fixed-point set diffeomorphic to Σ .

Construction:

- Consider product *G*-action on $X \times D(V)$, where *V* is any complex, 1-dimensional representation of *G*;
- By *h*-cobordism $X \times D(V) \cong D^{m+3}$;
- The action restricted to the boundary is the desired one.

There exist effective, non-product actions of G on $M^m \times S^2$.

There exist effective, non-product actions of G on $M^m \times S^2$.

Proof.

• Choose a *m*-dimensional ($m \ge 3$) homology sphere Σ bounding a contractible manifold *X*.

There exist effective, non-product actions of G on $M^m \times S^2$.

Proof.

- Choose a *m*-dimensional ($m \ge 3$) homology sphere Σ bounding a contractible manifold *X*.
- There exists a smooth action of G on S^{m+2} with the fixed point set diffeomorphic to Σ and tangential G-module at Σ isomorphic to $V \oplus m\mathbf{1}_G$.

There exist effective, non-product actions of G on $M^m \times S^2$.

Proof.

- Choose a *m*-dimensional ($m \ge 3$) homology sphere Σ bounding a contractible manifold *X*.
- There exists a smooth action of G on S^{m+2} with the fixed point set diffeomorphic to Σ and tangential G-module at Σ isomorphic to $V \oplus m\mathbf{1}_G$.
- \cdot Form a **G**-connected sum

$$M \times S(V \oplus \mathbb{R}) # S^{m+2} \cong M \times S^2.$$

• None of these allows for two components

$M\sqcup M\#\Sigma$

with non-isomorphic fundamental groups.

 \cdot None of these allows for two components

$M\sqcup M\#\Sigma$

with non-isomorphic fundamental groups.

Proposition

There exist exotic orientation preserving involutions on $M \times S^1$ for any asymmetric M of dimension $m \ge 4$.

Free S^1 -actions on $M^6 \times S^1$ are standard

Let *M*⁶ be one of the smooth asymmetric manifolds described by Puppe. In particular *M*⁶ is simply connected, spin manifold with torsion-free cohomology generated in the second dimension.

Let *M*⁶ be one of the smooth asymmetric manifolds described by Puppe. In particular *M*⁶ is simply connected, spin manifold with torsion-free cohomology generated in the second dimension.

Theorem

All orientation preserving, free S^1 -actions on $M^6\times S^1$ are equivalent to the product actions.

Let *M*⁶ be one of the smooth asymmetric manifolds described by Puppe. In particular *M*⁶ is simply connected, spin manifold with torsion-free cohomology generated in the second dimension.

Theorem

All orientation preserving, free S^1 -actions on $M^6\times S^1$ are equivalent to the product actions.

We strongly believe that the following is also true:

Conjecture

All free \mathbb{Z}_p -actions on $M^6 \times S^1$ are equivalent to a product action ($p \neq 2$).

All S^1 -bundles are determined by their first Chern class

 $c_1(\xi)=c(\xi)^*(x),$

where x is the generator of $H^2(BS^1, \mathbb{Z})$.

All S¹-bundles are determined by their first Chern class

 $c_1(\xi) = c(\xi)^*(x),$

where x is the generator of $H^2(BS^1, \mathbb{Z})$.

Our aim is to prove that $c_1(\xi)$ vanishes, so that we have a trivial bundle

$$\left(\mathsf{S}^1 \to \mathsf{X} \times \mathsf{S}^1 \to \mathsf{X}\right).$$

All S¹-bundles are determined by their first Chern class

 $c_1(\xi)=c(\xi)^*(x),$

where x is the generator of $H^2(BS^1, \mathbb{Z})$.

Our aim is to prove that $c_1(\xi)$ vanishes, so that we have a trivial bundle

$$(S^1 \to X \times S^1 \to X)$$
.

Assume so for now.

Then we have a commuting diagram:

Then we have a commuting diagram:

So we know that over (a manifold) X the trivial S¹-bundle satisfies

 $M \times S^1 \simeq X \times S^1$.

Observe that this gives us just a homotopy equivalence

 $M \xrightarrow{\simeq} X$

which we would like to improve to diffeomorphism.

Observe that this gives us just a homotopy equivalence

 $M \xrightarrow{\simeq} X$

which we would like to improve to diffeomorphism.

• We already have $M \times S^1 \cong X \times S^1$. Lift it to

 $\varphi: M \times \mathbb{R} \to X \times \mathbb{R}$.

• Image of $\varphi(M \times \{0\})$ belongs to $X \times (-a, a)$ for some a > 0. Set A for the connected component of $(X \times \mathbb{R}) - \varphi(M \times \{0\})$ such that

$$W = A \cap (X \times (-\infty, a])$$

is non empty.

• W is an h-cobordism between X and $\varphi(M)$ which yields a diffeomorphism $M \rightarrow X$.

The triviality of the first Chern class.

The triviality of the first Chern class.

Proof of this fact relays on:

Fact: Multiplication by $c_1(\xi)$ can be identified with a differential on the first non-trivial page of the Leray-Serre spectral sequence of the fibration.

Recall that M is 6-dimensional, simply connected manifold with cohomology

 $H^{*}(M) = Free(H^{*}(M)) = H^{even}(M)$

generated in dimension 2.

Recall that M is 6-dimensional, simply connected manifold with cohomology

 $H^{*}(M) = Free(H^{*}(M)) = H^{even}(M)$

generated in dimension 2.

By the long exact sequence of fibration, $\pi_1(X)$ is either trivial or finite cyclic.

Recall that M is 6-dimensional, simply connected manifold with cohomology

 $H^{*}(M) = Free(H^{*}(M)) = H^{even}(M)$

generated in dimension 2.

By the long exact sequence of fibration, $\pi_1(X)$ is either trivial or finite cyclic.

If S^1 acts preserving orientation, $\pi_1(X)$ acts trivially on $H^*(S^1)$ and we have Serre spectral sequence

$$E_2^{p,q} = H^p(X, H^q(S^1; \mathbb{Z})) \Rightarrow H^{p+q}(M \times S^1; \mathbb{Z})$$

with untwisted coefficients.

•
$$d_2: E_2^{0,1} \rightarrow E_2^{2,0}$$
 is multiplication by $c_1(\xi)$

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/_k$ is a generator. $c \in \text{Tor}(H^2(X)) = H_1(X) = \mathbb{Z}/_k$

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/k$ is a generator.

$$c \in \text{Tor}(H^2(X)) =$$

 $H_1(X) = \mathbb{Z}/k$

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/k$ is a generator.

$$c \in \text{Tor}(H^2(X)) =$$

 $H_1(X) = \mathbb{Z}/_R$

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/k$ is a generator.

$$c \in \text{Tor}(H^2(X)) =$$

 $H_1(X) = \mathbb{Z}/_R$

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/k$ is a generator.

$$c \in \text{Tor}(H^2(X)) =$$

 $H_1(X) = \mathbb{Z}/_R$

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/k$ is a generator.

$$c \in \text{Tor}(H^2(X)) =$$

 $H_1(X) = \mathbb{Z}/k$

• Since $d_2(c \otimes a) = c^2$, push $c \rightsquigarrow c^3 \otimes a \in E_2^{6,1}$.

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/_k$ is a generator.

Since
$$d_2(c \otimes a) = c^2$$
, push $c \rightsquigarrow c^3 \otimes a \in E_2^{6,1}$.

 $c \in \operatorname{Tor}(H^2(X)) =$ $H_1(X) = \mathbb{Z}/_R$

• $c^3 \otimes a$ survives to E_{∞} and hence to $H^7(M \times S^1)$.

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/_k$ is a generator.
- Since $d_2(c \otimes a) = c^2$, push $c \rightsquigarrow c^3 \otimes a \in E_2^{6,1}$.
- $c^3 \otimes a$ survives to E_{∞} and hence to $H^7(M \times S^1)$.
- But $H^7(M \times S^1) = \mathbb{Z}$, so $d_2(c^2 \otimes a) = c^3 = 0$.

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c$. We claim that $c \in \mathbb{Z}/_k$ is a generator.
- Since $d_2(c \otimes a) = c^2$, push $c \rightsquigarrow c^3 \otimes a \in E_2^{6,1}$.
- $c^3 \otimes a$ survives to E_{∞} and hence to $H^7(M \times S^1)$.
- But $H^7(M \times S^1) = \mathbb{Z}$, so $d_2(c^2 \otimes a) = c^3 = 0$.
- Now $c^2 \otimes a$ survives to E_{∞} , so we have an extension

 $c \in Tor(H^2(X)) =$

 $H_1(X) = \mathbb{Z}/k$

This proves simultaneously that

- $\cdot c_1(\xi)$ is trivial
- Tor $(H^2(X)) = H_1(X) = \pi_1(X)$ is trivial.

This proves simultaneously that

- $\cdot c_1(\xi)$ is trivial
- Tor $(H^2(X)) = H_1(X) = \pi_1(X)$ is trivial.

It also suggests, that the fact is more general and it holds for all manifolds with torsion-free cohomology in even degrees.

Free actions on $M \times S^1$

Theorem

Free $\mathbb{Z}/_p$ -actions on $M^6 \times S^1$ are smoothly/topologically conjugated if and only if their orbit spaces are homeo-/diffeomorphic (p prime).

Theorem

Free \mathbb{Z}_p -actions on $M^6 \times S^1$ are smoothly/topologically conjugated if and only if their orbit spaces are homeo-/diffeomorphic (p prime).

Proof: (for *p* = 2)

Let au_1 , au_2 be two involutions on $M imes S^1$. Suppose

$$f: (M \times S^1, q_1)/\tau_1 \rightarrow (M \times S^1, q_2)/\tau_2$$

is a homeomorphism.

The lift **F** of **f** exists if and only if

$$f_* \circ (p_1)_*(\pi_1) \subset (p_2)_*(\pi_1).$$

The lift **F** of **f** exists if and only if

$$f_* \circ (p_1)_*(\pi_1) \subset (p_2)_*(\pi_1).$$

This is always the case if e.g. $\pi_1((M \times S^1)/\tau_i) \cong \mathbb{Z}$.

Then $\tau_2 \circ F$ and $F \circ \tau_1$ are lifts of f, both distinct from F.

Then $\tau_2 \circ F$ and $F \circ \tau_1$ are lifts of f, both distinct from F. Since there are only two such lifts

 $\tau_2 = F \circ \tau_1 \circ F^{-1}$

which ends the proof.

Then $\tau_2 \circ F$ and $F \circ \tau_1$ are lifts of f, both distinct from F. Since there are only two such lifts

 $\tau_2 = F \circ \tau_1 \circ F^{-1}$

which ends the proof.

Lemma

Suppose that a finite group acts freely on $M \times S^1$, Then $\pi_1((M \times S^1)/G) \cong \mathbb{Z}$.

Proof.

• Let G act freely on $M \times S^1$, and set $\pi = \pi_1 ((M \times S^1)/G)$. Then

$$0 \rightarrow \mathbb{Z} \rightarrow \pi \rightarrow G \rightarrow 0.$$

Proof.

• Let G act freely on $M \times S^1$, and set $\pi = \pi_1((M \times S^1)/G)$. Then

$$0 \to \mathbb{Z} \to \pi \to G \to 0.$$

• $(M \times S^1)/G$ is still universally covered by $M \times \mathbb{R}$, therefore π acts (as deck transformations) on $M \times \mathbb{R}$.

Proof.

• Let G act freely on $M \times S^1$, and set $\pi = \pi_1((M \times S^1)/G)$. Then

$$0 \rightarrow \mathbb{Z} \rightarrow \pi \rightarrow G \rightarrow 0.$$

- $(M \times S^1)/G$ is still universally covered by $M \times \mathbb{R}$, therefore π acts (as deck transformations) on $M \times \mathbb{R}$.
- Yet we claim that no finite group acts freely on $M \times \mathbb{R}$, thus $\pi \cong \mathbb{Z}$.

Claim

Claim

No finite group acts freely on $M \times \mathbb{R}$.

Proof. Consider the fibration $M \times \mathbb{R} \to (M \times \mathbb{R})/\mathbb{Z}/_p \to K(\mathbb{Z}/_p, 1)$ and its associated Serre spectral sequence

$$E_2^{s,t} \cong H^s \Big(K(\mathbb{Z}/_p, 1); \mathcal{H}^t(M \times \mathbb{R}; \mathbb{Z}) \Big) \Longrightarrow H^{s+t} \left((M \times \mathbb{R}) \, \big/ \mathbb{Z}/_p; \mathbb{Z} \right).$$

Claim

Claim

No finite group acts freely on $M \times \mathbb{R}$.

Proof. Consider the fibration $M \times \mathbb{R} \to (M \times \mathbb{R})/\mathbb{Z}/_p \to K(\mathbb{Z}/_p, 1)$ and its associated Serre spectral sequence

$$E_2^{s,t} \cong H^s \Big(K(\mathbb{Z}/_p,1); \mathcal{H}^t(M\times \mathbb{R};\mathbb{Z}) \Big) \Longrightarrow H^{s+t} \left((M\times \mathbb{R}) \, \big/ \mathbb{Z}/_p; \mathbb{Z} \right).$$

o. preserving Draw the E_2 -page and watch it collapse, leaving cohomological dimension of $(M \times \mathbb{R})/\mathbb{Z}/_p$ infinite;

Claim

Claim

No finite group acts freely on $M \times \mathbb{R}$.

Proof. Consider the fibration $M \times \mathbb{R} \to (M \times \mathbb{R})/\mathbb{Z}/_p \to K(\mathbb{Z}/_p, 1)$ and its associated Serre spectral sequence

$$E_2^{s,t} \cong H^s \Big(K(\mathbb{Z}/_p,1); \mathcal{H}^t(M\times \mathbb{R};\mathbb{Z}) \Big) \Longrightarrow H^{s+t} \left((M\times \mathbb{R}) \, \big/ \mathbb{Z}/_p; \mathbb{Z} \right).$$

- **o. preserving** Draw the E_2 -page and watch it collapse, leaving cohomological dimension of $(M \times \mathbb{R})/\mathbb{Z}/_p$ infinite;
 - **o. reversing** Draw the E_2 -page and take the plunge...

• The ring $H^*(M; \mathbb{Z})$ admits a unique orientation reversing involution: (+1) on H^0 and H^4 , and (-1) on H^2 and H^6 .

- The ring $H^*(M; \mathbb{Z})$ admits a unique orientation reversing involution: (+1) on H^0 and H^4 , and (-1) on H^2 and H^6 .
- This leads to the unique twisted coefficients system $\mathcal{H}^t(M \times \mathbb{R}; \mathbb{Z})$.

- The ring $H^*(M; \mathbb{Z})$ admits a unique orientation reversing involution: (+1) on H^0 and H^4 , and (-1) on H^2 and H^6 .
- This leads to the unique twisted coefficients system $\mathcal{H}^t(M \times \mathbb{R}; \mathbb{Z})$.
- Identify $E_2^{*,0}$ with $H^*(K(\mathbb{Z}/_2,1);\mathbb{Z}) \cong \mathbb{Z}[a]/2a$ (deg a = 2).

- The ring $H^*(M; \mathbb{Z})$ admits a unique orientation reversing involution: (+1) on H^0 and H^4 , and (-1) on H^2 and H^6 .
- This leads to the unique twisted coefficients system $\mathcal{H}^t(M \times \mathbb{R}; \mathbb{Z})$.
- Identify $E_2^{*,0}$ with $H^*(K(\mathbb{Z}/_2, 1); \mathbb{Z}) \cong \mathbb{Z}[a]/2a$ (deg a = 2).
- The $E_2^{*,0}$ -module strucutre on $E_2^{*,4}$ is given by

 $E_2^{*,4} \cong H^* \big(K(\mathbb{Z}/_2,1); H^4(M;\mathbb{Z}) \big) \cong \mathbb{Z}[a]/2a \otimes H^4(M;\mathbb{Z}).$

- The ring $H^*(M;\mathbb{Z})$ admits a unique orientation reversing involution: (+1) on H^0 and H^4 , and (-1) on H^2 and H^6 .
- This leads to the unique twisted coefficients system $\mathcal{H}^t(M \times \mathbb{R}; \mathbb{Z})$.
- Identify $E_2^{*,0}$ with $H^*(K(\mathbb{Z}/_2, 1); \mathbb{Z}) \cong \mathbb{Z}[a]/2a$ (deg a = 2).
- The $E_2^{*,0}$ -module strucutre on $E_2^{*,4}$ is given by

 $E_2^{*,4} \cong H^*(K(\mathbb{Z}/_2,1); H^4(M;\mathbb{Z})) \cong \mathbb{Z}[a]/2a \otimes H^4(M;\mathbb{Z}).$

 $\cdot\,$ it follows that

$$E_2^{*,6} \cong H^* \left(K(\mathbb{Z}/_2, 1), \widetilde{\mathbb{Z}} \right) \cong \begin{cases} \mathbb{Z}/_2, & \text{for } * \text{ odd,} \\ 0, & \text{otherwise,} \end{cases}$$

with the $E^{*,0}$ -module structure given as $ax_{2i-1} = x_{2i+1}$ for x_{2i-1} the generator of $E_2^{2i-1,6}$. We will denote $x_1 = b$ and $x_{2i+1} = ba^i$

р

р

р

Awaits

Topological/smooth classification of the orbit spaces.

Question

Is it true that for n < N all effective actions of G on $M \times S^n$ are product actions?

Question

Is it true that for n < N all effective actions of G on $M \times S^n$ are product actions?

Problem

What are algebraic or geometric (computable!) invariants that will allow us to recognize a product action?

Question

Is it true that for n < N all effective actions of G on $M \times S^n$ are product actions?

Problem

What are algebraic or geometric (computable!) invariants that will allow us to recognize a product action?

Problem

What are possible free actions $M \times S^1$, where M is asymmetric, aspherical manifold?

Thank You