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Asymmetric manifolds



Definition
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Definition
A manifold is said to be asymmetric if it does not admit any non-trivial
action of a finite group.

There might be manifolds smoothly asymmetric which are not topologically
asymmetric.



Innocent beginning

Theorem ((Borel, 1969?), Conner&Raymond, 1971)

Let G denote a finite subgroup of homeomorphisms of a closed, connected,
aspherical manifold M. Consider the homomorphism

j: G — out (m(M))

which sends f € G < Homeo(M) to the outer automorphism of 1t1(M)

induced by the homeomorphism f. If ty(M) has trivial center, then jis a
monomorphism.
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Early examples

Theorem (Conner, Raymond and Weinberger, 1971)

Mapping toruses My of certain maps f: T" — T" are closed aspherical
manifolds such that

1 (My) has trivial center,
out (1 (My)) = Z/,
for n = 6,10,15, 21,28, 36, hence these are almost asymmetric manifolds
(only Z}, can possibly act effectively).

Theorem (Raymond, Tollefson, 1976)

There exists aspherical 3-manifold M with the outer automorphisms group of
117 IS torsion free. (i.e. Homeo(M) contain no finite subgroup).
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When everybody got tired of K (T, 1)’s...

[from 1976 list of open problems collected by Browder & Hsiang ]

It is generally felt that a manifold chosen at random will have very
little symmetry. Can this intuitive notion be made more precise? In
connection with this feeling we have the following specific question.

Question (Raymond & Schultz, 1976)
Does there exist a closed simply connected manifold on which no finite
group act effectively? (A weaker question, no involution?)

[repeated in 2002 by Adem & Davis]



Sidenote: converse to Borel

Theorem (Malfait, 1998)
Borel conditions are also necessary for e.g. flat Riemannian manifolds,
infra-nilmanifolds and infra-solvmanifolds of type (R).
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The simply connected case

Theorem

- There exist an infinite family of simply connected, 6-dimensional
smooth manifolds which do not admit any effective (even topological)
action of any compact Lie group, with possible exception of orientation
reversing involutions. (Puppe, 1995)

- Each of the manifolds above turns out to be a conjugation space i.e.
admits an involution halving degrees in cohomology (Olbermann, 2011)

- But if we are satisfied with just topological manifolds and actions with

equivariant tubular neighbourhoods, then there exists a similar family
of non-smoothable ones which admit no involutions at all (Kreck, 2011)

The existence of smooth simply connected manifolds with no finite
symmetries is still an open problem.
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Cohomology and asymmetry

Theorem (Puppe, 1995)
(chark = p) Let M be a compact manifold such that

- H*(M;R) has no non-trivial automorphism of order p,

- H*(M; R) has no non-trivial derivation of negative degree,

- H*(M; R) has no non-trivial deformation of negative weight, and
- H*(M; R) has minimal formal dimension.



Cohomology and asymmetry

Theorem (Puppe, 1995)
(chark = p) Let M be a compact manifold such that

- H*(M;R) has no non-trivial automorphism of order p,

- H*(M; R) has no non-trivial derivation of negative degree,

- H*(M; R) has no non-trivial deformation of negative weight, and
- H*(M; R) has minimal formal dimension.

Then M does not admit any non-trivial action of Z/, (in the case p = 2:
orientation preserving action).



Walls 6-manifolds

Theorem (Wall, 1966)

The diffeomorphism classes of elements of 6-dimensional, spin manifolds
with torsion free cohomology generated in 2-nd degree correspond
bijectively to isomorphism classes of (H, u,p1):

1. afree Z-module H of finite rank, corresponding to H*(M; Z),

2. atrilinear, symmetric form pu: Hx H X H — Z, corresponding to the cup
product in H*(M; Z),

3. alinear map p, € hom(H, Z), corresponding to the dual of the first
Pontrjagin class,

subject to the following conditions:

@ ukxxy =uxy,y) (mod?2)forx,y € H,
(b) py(x) = 4u(x,x,x) (mod 24) for x € H.



SetH=27%andf: H— Z,
(X1, eey Xe) =6(x1x§ = XXy + XoX2 + XoXo — X3Xs5 + XpXE+
+ X3X4 — X3X2 + X2Xg + X3X3 + X2Xe + XsX2+
+ X1XoXs + X1XoXs + X1X3Xe + XoXuXe + X3X5Xe+

+ X4X5Xs + X4XsXe + X5 + xg).

Then symmetric-trilinearisation of f provides a family M,s of almost
asymmetric manifolds.
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Product actions

An action of G on M x N is called a product action if it is equivalent (i.e. is
conjugated by a homeomorphism) with one decomposable in the following
manner.

GX(MXN) — MxN

®(g) 0 x|
(g, (x,y)) [0 w(g)} [y}—[cp(g)x,w(g)y]

Where @ and y denote actions of G on maifolds M, N respectively.
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Question
Given a product of manifolds M x N what are possible actions on the space?

When there are plenty of actions on both M and N, we tend to believe that
some of them might be interweaved to create a non-product one.

Choose M with as few symmetries as possible — an asymmetric one.
The most symmetric choice for N is a sphere.



Question

What is the minimal n (depending on M and G) such that there
exist a non-product action of G on M xS"?
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Outline

In this talk the we will focus on cases:

MxS'andM x S%,G=S"orG = Z/p.

1. Construct exotic actions on M x S?
2. Prove that free S'-actions on M® x S™ are standard
3. Towards classification of free actions on M® x S’

joint work with Zbigniew Btaszczyk
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Non-product actions

General assumptions:

- G = ZJp, a finite cyclic group or G = S%;

- M be a m-dimensional asymmetric manifold (not necessarily
simply-connected).

Proposition
There exist effective, non-product actions of G on M x S2.

If M is smooth, then the action can be arranged to be smooth as well.
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diffeomorphic to X.
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Codimension-2 fixed point sets of G-actions

Proposition

Let X be a contractible, (m + 1)-dimensional (m = 3) manifold with smooth
boundary 0X = X (2 is necessarily a Z-homology sphere). Then there exist
effective, smooth G-action on sphere S™*2 with the fixed-point set
diffeomorphic to X.

Construction:

- Consider product G-action on X xD(V), where V is any complex,
1-dimensional representation of G;

- By h-cobordism X xD(V) = D™+3;

- The action restricted to the boundary is the desired one.
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Non-product actions

Proposition
There exist effective, non-product actions of G on M™ xS2.

Proof.

- Choose a m-dimensional (m = 3) homology sphere X bounding a
contractible manifold X.

- There exists a smooth action of G on S™2 with the fixed point set
diffeomorphic to X and tangential G-module at X isomorphic to V& m1g.

- Form a G-connected sum

M XSV & R)#S™? = M xS2.
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Proof: (continued)

- None of these allows for two components
M L M#S
with non-isomorphic fundamental groups. O
Proposition

There exist exotic orientation preserving involutions on M x S for any
asymmetric M of dimension m > 4.
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Actions on M® x S’

Let M® be one of the smooth asymmetric manifolds described by Puppe. In
particular M8 is simply connected, spin manifold with torsion-free
cohomology generated in the second dimension.

Theorem
All orientation preserving, free S'-actions on M® x S' are equivalent to the

product actions.

We strongly believe that the following is also true:

Conjecture
All free Z/,-actions on M® x S' are equivalent to a product action (p # 2).
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All S'-bundles are determined by their first Chern class
a(&) = c(&)* %),

where x is the generator of H2(BS",Z).

Our aim is to prove that ¢;(&) vanishes, so that we have a trivial bundle

(S'=XxS" = X).

Assume so for now.



Proof: (continued)

Then we have a commuting diagram:

TT,
M><S1—G>M

/ -

51 = @ 851
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Proof: (continued)

Then we have a commuting diagram:

TT,
M><S1—G>M

/ -

51 = @ 851

T . /g)

MxS ——X

So we know that over (a manifold) X the trivial S'-bundle satisfies

MxS'=~XxS".



Proof: (continued)

Observe that this gives us just a homotopy equivalence
M= X

which we would like to improve to diffeomorphism.

20



Proof: (continued)

Observe that this gives us just a homotopy equivalence
M= X
which we would like to improve to diffeomorphism.
- We already have M x S" = X x S". Lift it to
@:MxR - XxR.

- Image of @ (M x {0}) belongs to X x (—a,a) for some a > 0. Set A for
the connected component of (X x R) — @ (M x {0}) such that

W=An(Xx(-c,a])

is non empty.

20



Proof: (continued)

XXR

Xx[-a,a]

- Wis an h-cobordism between X and @ (M) which yields a
diffeomorphism M — X. O

21
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Omiitted in the proof

The triviality of the first Chern class.
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Omiitted in the proof

The triviality of the first Chern class.

Proof of this fact relays on:

Fact: Multiplication by ¢;(&) can be identified with a differential on the first
non-trivial page of the Leray-Serre spectral sequence of the fibration.

22



Triviality of the first Chern class

Recall that M is 6-dimensional, simply connected manifold with cohomology
H*(M) = Free (H*(M)) = H®®"(M)

generated in dimension 2.
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Triviality of the first Chern class
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H*(M) = Free (H*(M)) = H®®"(M)
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Triviality of the first Chern class

Recall that M is 6-dimensional, simply connected manifold with cohomology
H*(M) = Free (H*(M)) = H®®"(M)

generated in dimension 2.

By the long exact sequence of fibration, 1r1(X) is either trivial or finite cyclic.

If ST acts preserving orientation, 74 (X) acts trivially on H*(S") and we have
Serre spectral sequence

E]? = HP (X, H(S";2)) = HP*I(M X S"; Z)

with untwisted coefficients.

23
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2 =
- Set d,(a) = ¢. We claim that ¢ € Z/, is a generator. iiad
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- dy: EY" — E3° is multiplication by ¢;(§)

2 =
- Set d,(a) = ¢. We claim that ¢ € Z/, is a generator. iiad
- Since d,(c®a) = ¢, pushc~ 3 ®a e E".
- ¢ ® a survives to E, and hence to H' (M x S).
H'(M x S")
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- dy: EY" — E3° is multiplication by ¢;(§)

. . ceTor(H (X)) =
- Set dy(a) = ¢. We claim that ¢ € Z/, is a generator. H (0 = ZJg
- Since d,(c®a) = ¢, pushc~ 3 ®a e E5".
- ¢ ® a survives to E,, and hence to H' (M x S).
- BUtH’' (M xS") =7Z,s0d,(c?®a) =c3=0.
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- dy: EY" — E3° is multiplication by ¢;(§)

2 =
- Set d,(a) = ¢. We claim that ¢ € Z/, is a generator. iiad
- Since d,(c®a) = ¢, pushc~ 3 ®a e E5".
- ¢ ® a survives to E,, and hence to H' (M x S).
- BUtH’' (M xS") =7Z,s0d,(c?®a) =c3=0.
- Now ¢? ® a survives to E«, SO we have an extension
0— E" - HMxS") — m—0.
< —
q Sc2®a torsion-free
HE(M x S)
] [ ] L] ° / L] [ ] L[]
(a)z e (c®a,. (?®a,...)z {..)z
\ T@a \ T@a \ Tgﬂ
(Mz 0 ..z u (..0z




This proves simultaneously that

- (&) is trivial
- Tor(H2(X)) = H(X) = T,(X) is trivial.
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This proves simultaneously that

- (&) is trivial
- Tor(H2(X)) = H(X) = T,(X) is trivial.

It also suggests, that the fact is more general and it holds for all manifolds
with torsion-free cohomology in even degrees.
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Free actionson M x S’

Theorem
Free Z,-actions on M® x S' are smoothly/topologically conjugated if and
only if their orbit spaces are homeo-/diffeomorphic (p prime).
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Free actionson M x S’

Theorem

Free Z,-actions on M® x S' are smoothly/topologically conjugated if and
only if their orbit spaces are homeo-/diffeomorphic (p prime).

Proof: (for p = 2)
Let T4, T, be two involutions on M x S'. Suppose

f: (M XS1,q1)/T1 — <M XS1,C]2)/T2

is a homeomorphism.

26



Proof: (for p = 2)

(M xS", o) (M xS’
, X1)
Pa
p2

(MxS',qg)/T
’ 1=
(M X S1=q2)/T2
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Proof: (for p = 2)

(M XS1,Q1)/T1 —_— (M XS1,qZ)/T2

The lift F of f exists if and only if

fi 0 (P1) (1) C (P2)« (T11).
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Proof: (for p = 2)

(MxS",Xo) ~=-------~ > (M xS, xq)
Pa p2

(M XS1,Q1)/T1 —_— (M XS1,qZ)/T2

The lift F of f exists if and only if

fi 0 (P1) (1) C (P2)« (T11).

This is always the case if e.g. T (M x S")/T;) = Z.

27



Proof: (end)

Then 1, o Fand F o Ty are lifts of f, both distinct from F.
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Proof: (end)

Then 1, o Fand F o Ty are lifts of f, both distinct from F. Since there are only
two such lifts
T, = Fo T 0 :’:_’I

which ends the proof. O
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Proof: (end)

Then 1, o Fand F o Ty are lifts of f, both distinct from F. Since there are only
two such lifts
T, = Fo T 0 :’:_’I

which ends the proof. O

Lemma
Suppose that a finite group acts freely on M x S', Then 11, (M x S")/G) = Z.
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Proof.
- Let G act freely on M x S' and set T = 114 ((M x S")/G). Then

0—-Z—-m—-G-—0.
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Proof.
- Let G act freely on M x S' and set T = 114 ((M x S")/G). Then
0—-Z—-1m—-G-0.

- (M x S")/G is still universally covered by M x R, therefore 7t acts (as
deck transformations) on M x R.
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Proof.
- Let G act freely on M x S' and set T = 114 ((M x S")/G). Then
0—-Z—-1m—-G-0.

- (M x S")/G is still universally covered by M x R, therefore 7t acts (as
deck transformations) on M x R.

- Yet we claim that no finite group acts freely on M X R, thus ™ = Z.
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Claim
No finite group acts freely on M x R.

Proof. Consider the fibration M x R — (M X R)/Z/, — K(Z/,,1) and its
associated Serre spectral sequence

Ey' = H(K(Z/p, 1); HEM X R; Z)) = H* ((MXR) /Z)p; Z).
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Claim
No finite group acts freely on M x R.

Proof. Consider the fibration M x R — (M X R)/Z/, — K(Z/,,1) and its
associated Serre spectral sequence

' = H(K(Z/p, 1) HUM X R; Z)) = H* ((MXR) /Z)p;Z).

0. preserving Draw the E;-page and watch it collapse, leaving
cohomological dimension of (M x R)/Z/, infinite;
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Claim
No finite group acts freely on M x R.

Proof. Consider the fibration M x R — (M X R)/Z/, — K(Z/,,1) and its
associated Serre spectral sequence

' = H(K(Z/p, 1) HUM X R; Z)) = H* ((MXR) /Z)p;Z).
0. preserving Draw the E;-page and watch it collapse, leaving

cohomological dimension of (M x R)/Z/, infinite;

o. reversing Draw the E,-page and take the plunge...

30



Plunge for p = 2.

- The ring H*(M; Z) admits a unique orientation reversing involution:
(+1) on H® and H%, and (=1) on H? and H°.
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Plunge for p = 2.

- The ring H*(M; Z) admits a unique orientation reversing involution:
(+1) on H® and H%, and (=1) on H? and H°.

- This leads to the unique twisted coefficients system H (M x R; Z).
- Identify E5*° with H* (K(Z ), 1); Z) = Z[a]/2a (dega = 2).
- The E5"°-module strucutre on EX** is given by
ES* = H*(K(Z},,1); H*(M; Z)) = Z[a]/2a ® H*(M; Z).
- it follows that

Z/y, for % odd,

EFS = H*(K(Z),1),2) =
g ( ? > 0, otherwise,

with the E*°-module structure given as ax,i_1 = Xai+1 for x,_q the

generator of E2 ", We will denote X; = b and X1 = ba’
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Awaits

Topological/smooth classification of
the orbit spaces.



Open Questions

Let G be an arbitrary finite group and let N be the smallest dimension of
faithful, irreducible representation of G.
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Open Questions

Let G be an arbitrary finite group and let N be the smallest dimension of
faithful, irreducible representation of G.

Question
Is it true that for n < N all effective actions of G on M xS" are product
actions?

Problem
What are algebraic or geometric (computable!) invariants that will allow us
to recognize a product action?

Problem
What are possible free actions M x S, where M is asymmetric, aspherical
manifold?
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Thank You
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