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Asymmetric manifolds



Definition
A manifold is said to be asymmetric if it does not admit any non-trivial
action of a finite group.

There might be manifolds smoothly asymmetric which are not topologically
asymmetric.
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Innocent beginning

Theorem ((Borel, 1969?), Conner&Raymond, 1971)
Let G denote a finite subgroup of homeomorphisms of a closed, connected,
aspherical manifold M. Consider the homomorphism

j : G→ Out (π1(M))

which sends f ∈ G < Homeo(M) to the outer automorphism of π1(M)
induced by the homeomorphism f . If π1(M) has trivial center, then j is a
monomorphism.
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Early examples

Theorem (Conner, Raymond and Weinberger, 1971)
Mapping toruses Mf of certain maps f : Tn → Tn are closed aspherical
manifolds such that

π1(Mf ) has trivial center,

Out
(
π1(Mf )

)
� Z/2

for n = 6, 10, 15, 21, 28, 36, hence these are almost asymmetric manifolds
(only Z/2 can possibly act effectively).

Theorem (Raymond, Tollefson, 1976)
There exists aspherical 3-manifold M with the outer automorphisms group of
π1 is torsion free. (i.e. Homeo(M) contain no finite subgroup).
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When everybody got tired of K(π, 1)’s...

[from 1976 list of open problems collected by Browder & Hsiang ]

It is generally felt that a manifold chosen at random will have very
little symmetry. Can this intuitive notion be made more precise? In
connection with this feeling we have the following specific question.

Question (Raymond & Schultz, 1976)
Does there exist a closed simply connected manifold on which no finite
group act effectively? (A weaker question, no involution?)

[repeated in 2002 by Adem & Davis]
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Sidenote: converse to Borel

Theorem (Malfait, 1998)
Borel conditions are also necessary for e.g. flat Riemannian manifolds,
infra-nilmanifolds and infra-solvmanifolds of type (R).
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The simply connected case

Theorem

• There exist an infinite family of simply connected, 6-dimensional
smooth manifolds which do not admit any effective (even topological)
action of any compact Lie group, with possible exception of orientation
reversing involutions. (Puppe, 1995)

• Each of the manifolds above turns out to be a conjugation space i.e.
admits an involution halving degrees in cohomology (Olbermann, 2011)

• But if we are satisfied with just topological manifolds and actions with
equivariant tubular neighbourhoods, then there exists a similar family
of non-smoothable ones which admit no involutions at all (Kreck, 2011)

The existence of smooth simply connected manifolds with no finite
symmetries is still an open problem.
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Cohomology and asymmetry

Theorem (Puppe, 1995)
(chark = p) Let M be a compact manifold such that

• H∗(M;k) has no non-trivial automorphism of order p,
• H∗(M;k) has no non-trivial derivation of negative degree,
• H∗(M;k) has no non-trivial deformation of negative weight, and
• H∗(M;k) has minimal formal dimension.

Then M does not admit any non-trivial action of Z/p (in the case p = 2:
orientation preserving action).
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Walls 6-manifolds

Theorem (Wall, 1966)
The diffeomorphism classes of elements of 6-dimensional, spin manifolds
with torsion free cohomology generated in 2-nd degree correspond
bijectively to isomorphism classes of (H, µ,p1):

1. a free Z-module H of finite rank, corresponding to H2(M;Z),
2. a trilinear, symmetric form µ : H× H× H→ Z, corresponding to the cup

product in H∗(M;Z),
3. a linear map p1 ∈ hom(H,Z), corresponding to the dual of the first

Pontrjagin class,

subject to the following conditions:

(a) µ(x, x, y) ≡ µ(x, y, y) (mod 2) for x, y ∈ H,
(b) p1(x) ≡ 4µ(x, x, x) (mod 24) for x ∈ H.
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Set H = Z6 and f : H→ Z,

f(x1, ..., x6) =6
(
x1x24 − x21x4 + x2x24 + x2x24 − x22x5 + x2x25+

+ x23x4 − x3x24 + x23x6 + x3x26 + x25x6 + x5x26+
+ x1x2x4 + x1x2x5 + x1x3x6 + x2x4x6 + x3x5x6+

+ x4x5x6 + x4x5x6 + x34 + x36
)
.

Then symmetric-trilinearisation of f provides a familyMAs of almost
asymmetric manifolds.
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Product Actions



Product actions

An action of G on M× N is called a product action if it is equivalent (i.e. is
conjugated by a homeomorphism) with one decomposable in the following
manner.

G× (M× N) -→ M× N
(
g, (x, y)

)
7 -→

[
ϕ(g) 0
0 ψ(g)

]
·
[
x
y

]
= [ϕ(g)x,ψ(g)y]

Where ϕ and ψ denote actions of G on maifolds M, N respectively.
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Motivation

Question
Given a product of manifolds M× N what are possible actions on the space?

When there are plenty of actions on both M and N, we tend to believe that
some of them might be interweaved to create a non-product one.

Choose M with as few symmetries as possible – an asymmetric one.
The most symmetric choice for N is a sphere.
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Question

Question

What is the minimal n (depending on M and G) such that there
exist a non-product action of G on M×Sn?
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Outline

In this talk the we will focus on cases:

M× S1 and M× S2, G = S1 or G = Z/p.

• 1. Construct exotic actions on M× S2

• 2. Prove that free S1-actions on M6 × S1 are standard
• 3. Towards classification of free actions on M6 × S1

joint work with Zbigniew Błaszczyk
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Actions on M× S2 are exotic



Non-product actions

General assumptions:

• G � Z/p, a finite cyclic group or G � S1;
• M be a m-dimensional asymmetric manifold (not necessarily
simply-connected).

Proposition
There exist effective, non-product actions of G on M×S2.

If M is smooth, then the action can be arranged to be smooth as well.
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Codimension-2 fixed point sets of G-actions

Proposition
Let X be a contractible, (m+ 1)-dimensional (m ≥ 3) manifold with smooth
boundary ∂X = Σ (Σ is necessarily a Z-homology sphere). Then there exist
effective, smooth G-action on sphere Sm+2 with the fixed-point set
diffeomorphic to Σ.

Construction:

• Consider product G-action on X ×D(V ), where V is any complex,
1-dimensional representation of G;

• By h-cobordism X ×D(V ) � Dm+3;
• The action restricted to the boundary is the desired one.
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Non-product actions

Proposition
There exist effective, non-product actions of G on Mm ×S2.

Proof.

• Choose a m-dimensional (m ≥ 3) homology sphere Σ bounding a
contractible manifold X.

• There exists a smooth action of G on Sm+2 with the fixed point set
diffeomorphic to Σ and tangential G-module at Σ isomorphic to V ⊕m1G.

• Form a G-connected sum

M×S(V ⊕R)#Sm+2 � M×S2.
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Proof: (continued)

• None of these allows for two components

MtM#Σ
with non-isomorphic fundamental groups.

Proposition
There exist exotic orientation preserving involutions on M× S1 for any
asymmetric M of dimension m ≥ 4.
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Proof: (continued)
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Free S1-actions on M6 × S1 are standard



Actions on M6 × S1

Let M6 be one of the smooth asymmetric manifolds described by Puppe. In
particular M6 is simply connected, spin manifold with torsion-free
cohomology generated in the second dimension.

Theorem
All orientation preserving, free S1-actions on M6 × S1 are equivalent to the
product actions.

We strongly believe that the following is also true:

Conjecture
All free Z/p-actions on M6 × S1 are equivalent to a product action (p ≠ 2).
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Proof:

All S1-bundles are determined by their first Chern class

c1(ξ) = c(ξ)∗(x),

where x is the generator of H2(BS1,Z).

Our aim is to prove that c1(ξ) vanishes, so that we have a trivial bundle(
S1 → X × S1 → X

)
.

Assume so for now.
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Proof: (continued)

Then we have a commuting diagram:

M× S1

M× S1

S1

M

X

BS1

i

i

πG

πG

' ∗

c(ξ)

' �h

So we know that over (a manifold) X the trivial S1-bundle satisfies

M× S1 ' X × S1.
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Proof: (continued)

Observe that this gives us just a homotopy equivalence

M '
----------→ X

which we would like to improve to diffeomorphism.

• We already have M× S1 � X × S1. Lift it to

ϕ : M×R→ X ×R.

• Image of ϕ
(
M× {0}

)
belongs to X × (−a,a) for some a > 0. Set A for

the connected component of (X ×R)−ϕ
(
M× {0}

)
such that

W = A∩
(
X × (−∞,a]

)
is non empty.
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Proof: (continued)

X ×R

X × [−a,a]

ϕ(M× {0})
W

A

• W is an h-cobordism between X and ϕ(M) which yields a
diffeomorphism M→ X.
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Omitted in the proof

The triviality of the first Chern class.

Proof of this fact relays on:

Fact: Multiplication by c1(ξ) can be identified with a differential on the first
non-trivial page of the Leray-Serre spectral sequence of the fibration.

22



Omitted in the proof

The triviality of the first Chern class.

Proof of this fact relays on:

Fact: Multiplication by c1(ξ) can be identified with a differential on the first
non-trivial page of the Leray-Serre spectral sequence of the fibration.

22



Omitted in the proof

The triviality of the first Chern class.

Proof of this fact relays on:

Fact: Multiplication by c1(ξ) can be identified with a differential on the first
non-trivial page of the Leray-Serre spectral sequence of the fibration.

22



Triviality of the first Chern class

Recall that M is 6-dimensional, simply connected manifold with cohomology

H∗(M) = Free (H∗(M)) = H even(M)

generated in dimension 2.

By the long exact sequence of fibration, π1(X) is either trivial or finite cyclic.

If S1 acts preserving orientation, π1(X) acts trivially on H∗(S1) and we have
Serre spectral sequence

Ep,q2 = Hp
(
X,Hq(S1;Z)

)
⇒ Hp+q(M× S1;Z)

with untwisted coefficients.
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• d2 : E0,12 → E2,02 is multiplication by c1(ξ)
• Set d2(a) = c. We claim that c ∈ Z/k is a generator.

c ∈ Tor(H2(X)) =
H1(X) = Z/k

• Since d2(c⊗ a) = c2, push c� ∈ E6,12 .
• survives to E∞ and hence to H7(M× S1).
• But H7(M× S1) = Z, so d2(c2 ⊗ a) = c3 = 0.
• Now c2 ⊗ a survives to E∞, so we have an extension

0→ E 4,12︸︷︷︸
3c2⊗a

↩ H 5(M× S1)︸ ︷︷ ︸
torsion-free

→ �→ 0.

0 1 2 3 4 5 6 7

0

1

2

〈1〉Z • •

〈a〉Z • •

• • • • • • • •

p

q

d2 = c1 ^·

H 2(M× S1)

〈c⊗ a, . . .〉Z
⊗a

〈c2, . . .〉Z

c1 ^· ⊗a ⊗a

H 7(M× S1)H 5(M× S1)

�
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This proves simultaneously that

• c1(ξ) is trivial
• Tor(H 2(X)) = H1(X) = π1(X) is trivial.

It also suggests, that the fact is more general and it holds for all manifolds
with torsion-free cohomology in even degrees.
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Free actions on M× S1



Free actions on M× S1

Theorem
Free Z/p-actions on M6 × S1 are smoothly/topologically conjugated if and
only if their orbit spaces are homeo-/diffeomorphic (p prime).

Proof: (for p = 2)
Let τ1, τ2 be two involutions on M× S1. Suppose

f :
(
M× S1,q1

)/
τ1 →

(
M× S1,q2

)/
τ2

is a homeomorphism.
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Proof: (for p = 2)

(
M× S1,q1

)/
τ1

(
M× S1,q2

)/
τ2

(M× S1, x0) (M× S1, x1)

p1 p2

f

F

The lift F of f exists if and only if

f∗ ◦ (p1)∗(π1) ⊂ (p2)∗(π1).

This is always the case if e.g. π1
(
(M× S1)

/
τi
)
� Z.
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Proof: (end)

Then τ2 ◦ F and F ◦ τ1 are lifts of f , both distinct from F.

Since there are only
two such lifts

τ2 = F ◦ τ1 ◦ F−1

which ends the proof.

Lemma
Suppose that a finite group acts freely on M× S1, Then π1

(
(M× S1)

/
G
)
� Z.
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Proof

Proof.

• Let G act freely on M× S1, and set π = π1
(
(M× S1)/G

)
. Then

0→ Z→ π → G→ 0.

• (M× S1)/G is still universally covered by M×R, therefore π acts (as
deck transformations) on M×R.

• Yet we claim that no finite group acts freely on M×R, thus π � Z.
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Claim

Claim
No finite group acts freely on M×R.

Proof. Consider the fibration M×R→ (M×R)
/
Z/p → K

(
Z/p, 1

)
and its

associated Serre spectral sequence

Es,t2 � Hs
(
K(Z/p, 1);H t(M×R;Z)

)
=⇒ Hs+t

(
(M×R)

/
Z/p;Z

)
.

o. preserving Draw the E2-page and watch it collapse, leaving
cohomological dimension of (M×R)

/
Z/p infinite;

o. reversing Draw the E2-page and take the plunge...
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Plunge for p = 2.

• The ring H∗(M;Z) admits a unique orientation reversing involution:
(+1) on H0 and H4, and (−1) on H2 and H6.

• This leads to the unique twisted coefficients systemH t(M×R;Z).
• Identify E∗,02 with H∗(K(Z/2, 1);Z) � Z[a]/2a (dega = 2).
• The E∗,02 -module strucutre on E∗,42 is given by

E∗,42 � H∗
(
K(Z/2, 1);H4(M;Z)

)
� Z[a]

/
2a⊗ H4(M;Z).

• it follows that

E∗,62 � H∗
(
K(Z/2, 1), Z̃

)
�

Z/2, for ∗ odd,
0, otherwise,

with the E∗,0-module structure given as ax2i−1 = x2i+1 for x2i−1 the
generator of E2i−1,62 . We will denote x1 = b and x2i+1 = bai
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Awaits

Topological/smooth classification of
the orbit spaces.
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Open Questions

Let G be an arbitrary finite group and let N be the smallest dimension of
faithful, irreducible representation of G.

Question
Is it true that for n < N all effective actions of G on M×Sn are product
actions?

Problem
What are algebraic or geometric (computable!) invariants that will allow us
to recognize a product action?

Problem
What are possible free actions M× S1, where M is asymmetric, aspherical
manifold?
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Thank You
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